Functional dystonia, the second most common functional movement disorder, is characterized by acute or subacute onset of fixed limb, truncal, or facial posturing, incongruent with the action-induced, position-sensitive, and task-specific manifestations of dystonia. We review neurophysiological and neuroimaging data as the basis for a dysfunctional networks in functional dystonia. Reduced intracortical and spinal inhibition contributes to abnormal muscle activation, which may be perpetuated by abnormal sensorimotor processing, impaired selection of movements, and hypoactive sense of agency in the setting of normal movement preparation but abnormal connectivity between the limbic and motor networks. Phenotypic variability may be related to as-yet undefined interactions between abnormal top-down motor regulation and overactivation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortices. While there remain many gaps in knowledge, further combined neurophysiological and neuroimaging assessments stand to inform the neurobiological subtypes of functional dystonia and the potential therapeutic applications.
Dysfunctional Networks in Functional Dystonia / Ricciardi, Lucia; Bologna, Matteo; Marsili, Luca; Espay, Alberto J.. - (2023).
Dysfunctional Networks in Functional Dystonia
Matteo BolognaWriting – Review & Editing
;
2023
Abstract
Functional dystonia, the second most common functional movement disorder, is characterized by acute or subacute onset of fixed limb, truncal, or facial posturing, incongruent with the action-induced, position-sensitive, and task-specific manifestations of dystonia. We review neurophysiological and neuroimaging data as the basis for a dysfunctional networks in functional dystonia. Reduced intracortical and spinal inhibition contributes to abnormal muscle activation, which may be perpetuated by abnormal sensorimotor processing, impaired selection of movements, and hypoactive sense of agency in the setting of normal movement preparation but abnormal connectivity between the limbic and motor networks. Phenotypic variability may be related to as-yet undefined interactions between abnormal top-down motor regulation and overactivation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortices. While there remain many gaps in knowledge, further combined neurophysiological and neuroimaging assessments stand to inform the neurobiological subtypes of functional dystonia and the potential therapeutic applications.File | Dimensione | Formato | |
---|---|---|---|
Ricciardi-2023-Dysfunctional-networks-in-functiona.pdf
solo gestori archivio
Note: Ricciardi_Dysfunctional Networks in Functional Dystonia_2023
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
452.3 kB
Formato
Adobe PDF
|
452.3 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.