In this contribution, we present a set of procedures developed to identify fluid flow structures and characterize their space-time evolution in time-dependent flows. In particular, we consider two different contests of importance in applied fluid mechanics: 1) large-scale almost 2D atmospheric and oceanic flows and 2) flow inside the left ventricle in the human blood circulation. For both cases, we designed an ad hoc experimental model to reproduce and deeply investigate the considered phenomena. We will focus on the post-processing of high-resolution velocity data sets obtained via laboratory experiments by measuring the flow field using a technique based on image analysis. We show how the proposed methodologies represent a valid tool suitable for extracting the main patterns and quantify fluid transport in complex flows from both Eulerian and Lagrangian perspectives.
Vortex analysis and fluid transport in time-dependent flows / Espa, Stefania; Badas, Maria Grazia; Cabanes, Simon. - (2022), pp. 79-94. [10.5772/intechopen.105196].
Vortex analysis and fluid transport in time-dependent flows
Espa, Stefania
;Cabanes, Simon
2022
Abstract
In this contribution, we present a set of procedures developed to identify fluid flow structures and characterize their space-time evolution in time-dependent flows. In particular, we consider two different contests of importance in applied fluid mechanics: 1) large-scale almost 2D atmospheric and oceanic flows and 2) flow inside the left ventricle in the human blood circulation. For both cases, we designed an ad hoc experimental model to reproduce and deeply investigate the considered phenomena. We will focus on the post-processing of high-resolution velocity data sets obtained via laboratory experiments by measuring the flow field using a technique based on image analysis. We show how the proposed methodologies represent a valid tool suitable for extracting the main patterns and quantify fluid transport in complex flows from both Eulerian and Lagrangian perspectives.File | Dimensione | Formato | |
---|---|---|---|
Espa_Vortex-analysis-fluid_2022.pdf
accesso aperto
Note: copertina, capitolo, retro di copertina
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.