Hyperspectral videos—multi-wavelength imaging of objects over time—generate a lot of informative data. But such diffuse spectroscopy measurements are usually non-selective, i.e., they respond to many different phenomena at the same time. To become quantitative, reliable and understandable, they require efficient mathematical data modeling. This article concerns how to model both known and unknown variation types in hyperspectral video data.
4.16 - Fast Analysis, Processing and Modeling of Hyperspectral Videos: Challenges and Possible Solutions / Vitale, R.; Stefansson, P.; Marini, F.; Ruckebusch, C.; Burud, I.; Martens, H.. - (2020), pp. 395-409. [10.1016/B978-0-12-409547-2.14605-0].
4.16 - Fast Analysis, Processing and Modeling of Hyperspectral Videos: Challenges and Possible Solutions
Marini F.;
2020
Abstract
Hyperspectral videos—multi-wavelength imaging of objects over time—generate a lot of informative data. But such diffuse spectroscopy measurements are usually non-selective, i.e., they respond to many different phenomena at the same time. To become quantitative, reliable and understandable, they require efficient mathematical data modeling. This article concerns how to model both known and unknown variation types in hyperspectral video data.File | Dimensione | Formato | |
---|---|---|---|
Vitale_Fast-Analysis_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
830.75 kB
Formato
Adobe PDF
|
830.75 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.