Many problems in chemistry involve the prediction of one or more qualitative or quantitative properties based on the experimental data. Examples of such problems involve, for instance, the possibility of predicting protein or lipid content in food matrices based on NIR spectra or of diagnosing the onset of a disease through the MS or NMR analysis of serum samples. In the former case, the property to be predicted is of a quantitative nature, while in the latter, it is discrete (qualitative). This chapter presents the chemometric strategies most commonly used to formulate predictive models, i.e., models that relate one or more dependent variables Y (qualitative or quantitative) to a set of independent variables X.

Multivariate predictive modeling and validation / Biancolillo, A.; Marini, F.. - (2023), pp. 27-46. [10.1016/B978-0-323-90408-7.00001-0].

Multivariate predictive modeling and validation

Marini F.
Ultimo
2023

Abstract

Many problems in chemistry involve the prediction of one or more qualitative or quantitative properties based on the experimental data. Examples of such problems involve, for instance, the possibility of predicting protein or lipid content in food matrices based on NIR spectra or of diagnosing the onset of a disease through the MS or NMR analysis of serum samples. In the former case, the property to be predicted is of a quantitative nature, while in the latter, it is discrete (qualitative). This chapter presents the chemometric strategies most commonly used to formulate predictive models, i.e., models that relate one or more dependent variables Y (qualitative or quantitative) to a set of independent variables X.
2023
Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling
9780323904087
9780323907064
classification; latent variables; partial least squares (PLS); partial least squares discriminant analysis (PLS-DA); regression; soft independent modeling of class analogies (SIMCA)
02 Pubblicazione su volume::02a Capitolo o Articolo
Multivariate predictive modeling and validation / Biancolillo, A.; Marini, F.. - (2023), pp. 27-46. [10.1016/B978-0-323-90408-7.00001-0].
File allegati a questo prodotto
File Dimensione Formato  
Biancolillo_Multivariate_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 267.87 kB
Formato Adobe PDF
267.87 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1687624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact