We consider the transport equation $\ppp_t u(x,t) + %\alpha' H(t)\cdot \nabla u(x,t) = 0$ in $\OOO\times(0,T),$ where $T>0$ and $\OOO\subset \R^d%,\, d\in\N, $ is a bounded domain with smooth boun\-dary $\ppp\OOO$. First, we prove a Carleman estimate for solutions of finite energy with piecewise continuous weight functions. Then, under a further condition which guarantees that the orbits of $H$ intersect $\ppp\OOO$, we prove an energy estimate which in turn yields an obser\-vability inequality. Our results are motivated by applications to inverse problems.
Observability inequalities for transport equations through Carleman estimates / Cannarsa, Piermarco; Floridia, Giuseppe; Yamamoto, Masahiro. - (2019), pp. 69-87. [10.1007/978-3-030-17949-6_4].
Observability inequalities for transport equations through Carleman estimates
Piermarco Cannarsa;Giuseppe Floridia;
2019
Abstract
We consider the transport equation $\ppp_t u(x,t) + %\alpha' H(t)\cdot \nabla u(x,t) = 0$ in $\OOO\times(0,T),$ where $T>0$ and $\OOO\subset \R^d%,\, d\in\N, $ is a bounded domain with smooth boun\-dary $\ppp\OOO$. First, we prove a Carleman estimate for solutions of finite energy with piecewise continuous weight functions. Then, under a further condition which guarantees that the orbits of $H$ intersect $\ppp\OOO$, we prove an energy estimate which in turn yields an obser\-vability inequality. Our results are motivated by applications to inverse problems.File | Dimensione | Formato | |
---|---|---|---|
Cannarsa_Observability_2019.pdf
solo gestori archivio
Note: Versione editoriale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
734.33 kB
Formato
Adobe PDF
|
734.33 kB | Adobe PDF | Contatta l'autore |
CFY1_revis6.pdf
accesso aperto
Note: Versione pre-print
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.