We consider the transport equation $\ppp_t u(x,t) + %\alpha' H(t)\cdot \nabla u(x,t) = 0$ in $\OOO\times(0,T),$ where $T>0$ and $\OOO\subset \R^d%,\, d\in\N, $ is a bounded domain with smooth boun\-dary $\ppp\OOO$. First, we prove a Carleman estimate for solutions of finite energy with piecewise continuous weight functions. Then, under a further condition which guarantees that the orbits of $H$ intersect $\ppp\OOO$, we prove an energy estimate which in turn yields an obser\-vability inequality. Our results are motivated by applications to inverse problems.

Observability inequalities for transport equations through Carleman estimates / Cannarsa, Piermarco; Floridia, Giuseppe; Yamamoto, Masahiro. - (2019), pp. 69-87. [10.1007/978-3-030-17949-6_4].

Observability inequalities for transport equations through Carleman estimates

Piermarco Cannarsa;Giuseppe Floridia;
2019

Abstract

We consider the transport equation $\ppp_t u(x,t) + %\alpha' H(t)\cdot \nabla u(x,t) = 0$ in $\OOO\times(0,T),$ where $T>0$ and $\OOO\subset \R^d%,\, d\in\N, $ is a bounded domain with smooth boun\-dary $\ppp\OOO$. First, we prove a Carleman estimate for solutions of finite energy with piecewise continuous weight functions. Then, under a further condition which guarantees that the orbits of $H$ intersect $\ppp\OOO$, we prove an energy estimate which in turn yields an obser\-vability inequality. Our results are motivated by applications to inverse problems.
2019
Trends in Control Theory and Partial Differential Equations
978-3-030-17948-9
978-3-030-17949-6
Carleman estimates; transport equation; observability inequality
02 Pubblicazione su volume::02a Capitolo o Articolo
Observability inequalities for transport equations through Carleman estimates / Cannarsa, Piermarco; Floridia, Giuseppe; Yamamoto, Masahiro. - (2019), pp. 69-87. [10.1007/978-3-030-17949-6_4].
File allegati a questo prodotto
File Dimensione Formato  
Cannarsa_Observability_2019.pdf

solo gestori archivio

Note: Versione editoriale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 734.33 kB
Formato Adobe PDF
734.33 kB Adobe PDF   Contatta l'autore
CFY1_revis6.pdf

accesso aperto

Note: Versione pre-print
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1682074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact