These lecture notes provide the material for a short introductory course on effective equations for classical particle systems. They concern the basic equations in kinetic theory, written by Boltzmann and Landau, describing rarefied gases and weakly interacting plasmas respectively. These equations can be derived formally, under suitable scaling limits, taking classical particle systems as a starting point. A rigorous proof of this limiting procedure is difficult and still largely open. We discuss some mathematical problems arising in this context.
A brief introduction to the scaling limits and effective equations in kinetic theory / Pulvirenti, M; Simonella, S. - (2021).
A brief introduction to the scaling limits and effective equations in kinetic theory
Simonella S
2021
Abstract
These lecture notes provide the material for a short introductory course on effective equations for classical particle systems. They concern the basic equations in kinetic theory, written by Boltzmann and Landau, describing rarefied gases and weakly interacting plasmas respectively. These equations can be derived formally, under suitable scaling limits, taking classical particle systems as a starting point. A rigorous proof of this limiting procedure is difficult and still largely open. We discuss some mathematical problems arising in this context.File | Dimensione | Formato | |
---|---|---|---|
Pulvirenti_A-brief-introduction_2021.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
293.89 kB
Formato
Adobe PDF
|
293.89 kB | Adobe PDF | Contatta l'autore |
Pulvirenti_preprint_A-brief-introduction_2021.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
378.09 kB
Formato
Adobe PDF
|
378.09 kB | Adobe PDF | |
Pulvirenti_frontespizio-indice_A-brief-introduction_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
98.09 kB
Formato
Adobe PDF
|
98.09 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.