: Chronic Lymphocytic Leukaemia (CLL) is an incurable disease that warrants new therapeutic treatments. CLL cells accumulate in the peripheral blood, in the bone marrow and in secondary lymphoid organs. Unlike circulating CLL cells, CLL cells resident in these last two compartments display high chemoresistance and proliferative capacity. Given the importance of the microenvironment in this disease, strategies that aim to develop new therapeutic agents need to consider this critical factor. Various cell culture conditions have been described that attempt to emulate either the different types of microenvironments in which CLL cells are found or an individual component of a particular microenvironment. Here, a methodology that partially mimics the interaction between CLL cells and the CD3+ CD4+ CD154+ T cells is described. Moreover, within this method, two protocols are presented and compared that may partially recapitulate different physiological states. The methodology can be exploited for target validation and drug development in CLL.
A cell culture system that mimics chronic lymphocytic leukemia cells microenvironment for drug screening and characterization / Natoni, Alessandro; O'Dwyer, Michael; Santocanale, Corrado. - (2013), pp. 217-226. - METHODS IN MOLECULAR BIOLOGY. [10.1007/978-1-62703-311-4_14].
A cell culture system that mimics chronic lymphocytic leukemia cells microenvironment for drug screening and characterization
Natoni, AlessandroPrimo
Conceptualization
;
2013
Abstract
: Chronic Lymphocytic Leukaemia (CLL) is an incurable disease that warrants new therapeutic treatments. CLL cells accumulate in the peripheral blood, in the bone marrow and in secondary lymphoid organs. Unlike circulating CLL cells, CLL cells resident in these last two compartments display high chemoresistance and proliferative capacity. Given the importance of the microenvironment in this disease, strategies that aim to develop new therapeutic agents need to consider this critical factor. Various cell culture conditions have been described that attempt to emulate either the different types of microenvironments in which CLL cells are found or an individual component of a particular microenvironment. Here, a methodology that partially mimics the interaction between CLL cells and the CD3+ CD4+ CD154+ T cells is described. Moreover, within this method, two protocols are presented and compared that may partially recapitulate different physiological states. The methodology can be exploited for target validation and drug development in CLL.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.