The present paper reviews some results about the Turan number of bipartite graphs and about clique-free pseudorandom graphs. The geometric aspect of known construction is highlighted, sometimes providing a different proof of known results and giving a new prospective on how to tackles such problems. Some new results are also presented.

Finite geometry and extremal graph theory / Pepe, Valentina. - (2022). [10.1017/9781009093927].

Finite geometry and extremal graph theory

Valentina Pepe
2022

Abstract

The present paper reviews some results about the Turan number of bipartite graphs and about clique-free pseudorandom graphs. The geometric aspect of known construction is highlighted, sometimes providing a different proof of known results and giving a new prospective on how to tackles such problems. Some new results are also presented.
2022
Surveys in Combinatorics 2022
9781009093927
9781009096225
extremal graphs; algebraic varieties over finite fields
02 Pubblicazione su volume::02a Capitolo o Articolo
Finite geometry and extremal graph theory / Pepe, Valentina. - (2022). [10.1017/9781009093927].
File allegati a questo prodotto
File Dimensione Formato  
Pepe_Finite Geometry_2022.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 247.54 kB
Formato Adobe PDF
247.54 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1673370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact