We propose an “optimize-then-discretize” approach for the numerical solution of optimal control problems for systems with delays in both state and control. We first derive the optimality conditions and an explicit representation of the gradient of the cost functional. Then, we use explicit discretizations of the state/costate equations and employ general-purpose Non-Linear Programming (NLP) solvers, in particular Conjugate Gradient or Quasi-Newton schemes, to easily implement a descent method. Finally, we prove convergence of the algorithm to stationary points of the cost, and present some numerical simulations on model problems, including performance evaluation.

Computation of optimal trajectories for delay systems: An optimize-then-discretize strategy for general-purpose NLP solvers / Cacace, Simone; Ferretti, Roberto; Rafiei, Zahra. - (2018), pp. 39-62. - SPRINGER INDAM SERIES. [10.1007/978-3-030-01959-4_3].

Computation of optimal trajectories for delay systems: An optimize-then-discretize strategy for general-purpose NLP solvers

Cacace Simone
;
2018

Abstract

We propose an “optimize-then-discretize” approach for the numerical solution of optimal control problems for systems with delays in both state and control. We first derive the optimality conditions and an explicit representation of the gradient of the cost functional. Then, we use explicit discretizations of the state/costate equations and employ general-purpose Non-Linear Programming (NLP) solvers, in particular Conjugate Gradient or Quasi-Newton schemes, to easily implement a descent method. Finally, we prove convergence of the algorithm to stationary points of the cost, and present some numerical simulations on model problems, including performance evaluation.
2018
Springer INdAM Series
978-3-030-01958-7
978-3-030-01959-4
Delay systems; NLP solvers; Numerical approximation; Optimality conditions
02 Pubblicazione su volume::02a Capitolo o Articolo
Computation of optimal trajectories for delay systems: An optimize-then-discretize strategy for general-purpose NLP solvers / Cacace, Simone; Ferretti, Roberto; Rafiei, Zahra. - (2018), pp. 39-62. - SPRINGER INDAM SERIES. [10.1007/978-3-030-01959-4_3].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1659840
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact