We extend the global invertibility result (Henao et al., Adv Calculus Var 14(2):207–230, 2021) to a class of orientation-preserving Orlicz–Sobolev maps with an integrability just above n − 1, whose traces on the boundary are also Orlicz–Sobolev and which do not present cavitation in the interior or at the boundary. As an application, we prove the existence of a.e. injective minimizers within this class for functionals in nonlinear elasticity.
Invertibility of Orlicz–Sobolev maps / Scilla, G.; Stroffolini, B.. - (2022), pp. 297-317. [10.1007/978-3-031-04496-0_13].
Invertibility of Orlicz–Sobolev maps
Scilla G.;
2022
Abstract
We extend the global invertibility result (Henao et al., Adv Calculus Var 14(2):207–230, 2021) to a class of orientation-preserving Orlicz–Sobolev maps with an integrability just above n − 1, whose traces on the boundary are also Orlicz–Sobolev and which do not present cavitation in the interior or at the boundary. As an application, we prove the existence of a.e. injective minimizers within this class for functionals in nonlinear elasticity.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Scilla_Invertibility_2022.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
363.78 kB
Formato
Adobe PDF
|
363.78 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.