We extend the global invertibility result (Henao et al., Adv Calculus Var 14(2):207–230, 2021) to a class of orientation-preserving Orlicz–Sobolev maps with an integrability just above n − 1, whose traces on the boundary are also Orlicz–Sobolev and which do not present cavitation in the interior or at the boundary. As an application, we prove the existence of a.e. injective minimizers within this class for functionals in nonlinear elasticity.

Invertibility of Orlicz–Sobolev maps / Scilla, G.; Stroffolini, B.. - (2022), pp. 297-317. [10.1007/978-3-031-04496-0_13].

Invertibility of Orlicz–Sobolev maps

Scilla G.;
2022

Abstract

We extend the global invertibility result (Henao et al., Adv Calculus Var 14(2):207–230, 2021) to a class of orientation-preserving Orlicz–Sobolev maps with an integrability just above n − 1, whose traces on the boundary are also Orlicz–Sobolev and which do not present cavitation in the interior or at the boundary. As an application, we prove the existence of a.e. injective minimizers within this class for functionals in nonlinear elasticity.
2022
Association for Women in Mathematics Series
978-3-031-04495-3
978-3-031-04496-0
Orlicz-Sobolev spaces, nonlinear elasticity, orientation preserving maps
02 Pubblicazione su volume::02a Capitolo o Articolo
Invertibility of Orlicz–Sobolev maps / Scilla, G.; Stroffolini, B.. - (2022), pp. 297-317. [10.1007/978-3-031-04496-0_13].
File allegati a questo prodotto
File Dimensione Formato  
Scilla_Invertibility_2022.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 363.78 kB
Formato Adobe PDF
363.78 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1657062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact