Analyzing categorical data in machine learning generally requires a coding strategy. This problem is common to multivariate statistical techniques and several approaches have been suggested in the literature. This article proposes a method for analyzing categorical variables with neural networks. Both a supervised and unsupervised approach were considered, in which the variables can have high cardinality. Some simulated data applications illustrate the interest of the proposal.

Optimal Coding of Categorical Data in Machine Learning / DI CIACCIO, Agostino. - (2023). - STUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION.

Optimal Coding of Categorical Data in Machine Learning

Agostino Di Ciaccio
Primo
2023

Abstract

Analyzing categorical data in machine learning generally requires a coding strategy. This problem is common to multivariate statistical techniques and several approaches have been suggested in the literature. This article proposes a method for analyzing categorical variables with neural networks. Both a supervised and unsupervised approach were considered, in which the variables can have high cardinality. Some simulated data applications illustrate the interest of the proposal.
2023
Statistical Models and Methods for Data Science
978-3-031-30163-6
encoding categorical data, neural networks, high cardinality attributes, optimal scaling
02 Pubblicazione su volume::02a Capitolo o Articolo
Optimal Coding of Categorical Data in Machine Learning / DI CIACCIO, Agostino. - (2023). - STUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1650011
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact