We express the realized volatility in terms of the Hurst exponent of the trajectory drawn by the market index. By analyzing distribution, stationarity, and (partial) sample autocorrelation of the estimated paths, and exploiting the empirical law of return to the central value 1/2, we model the dynamics of H(t) (and hence of the volatility) through a fractional Brownian bridge of appropriate parameter H.

Modelling H-Volatility with Fractional Brownian Bridge / Bianchi, Sergio; Frezza, Massimiliano; Pianese, Augusto; Palazzo Anna, Maria. - (2022), pp. 96-102. [10.1007/978-3-030-99638-3].

Modelling H-Volatility with Fractional Brownian Bridge

Bianchi Sergio;Frezza Massimiliano
;
2022

Abstract

We express the realized volatility in terms of the Hurst exponent of the trajectory drawn by the market index. By analyzing distribution, stationarity, and (partial) sample autocorrelation of the estimated paths, and exploiting the empirical law of return to the central value 1/2, we model the dynamics of H(t) (and hence of the volatility) through a fractional Brownian bridge of appropriate parameter H.
2022
Mathematical and Statistical Methods for Actuarial Sciences and Finance MAF 2022
978-3-030-99637-6
Hurst exponent; Fractional Brownian bridge; Volatility
02 Pubblicazione su volume::02a Capitolo o Articolo
Modelling H-Volatility with Fractional Brownian Bridge / Bianchi, Sergio; Frezza, Massimiliano; Pianese, Augusto; Palazzo Anna, Maria. - (2022), pp. 96-102. [10.1007/978-3-030-99638-3].
File allegati a questo prodotto
File Dimensione Formato  
Bianchi_Modelling-H-Volatility_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 216.94 kB
Formato Adobe PDF
216.94 kB Adobe PDF   Contatta l'autore
Bianchi_MAF-Bookmatter_2022.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 159.24 kB
Formato Adobe PDF
159.24 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1646105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact