The authors propose a framework to estimate the probability of being poor in a dynamic setting based on a large information set that includes individual characteristics and macro‐economic variables. The joint inclusion of personal characteristics along with contextual factors allows separation of idiosyncratic shocks from aggregate shocks affecting poverty. The authors combine data from different cross‐sectional surveys and fit a dynamic logistic hierarchical model within a Bayesian framework using standard Markov chain Monte Carlo techniques. The authors’ approach is exemplified by estimating household poverty status in Kyrgyz Republic as a function of time, regions, country, regional level variables and household level socio‐demographic characteristics.
Modeling Household Poverty Status Using Repeated Cross-sectional Surveys / Zelli, Roberto; Pittau, Maria Grazia. - (2021), pp. 57-76. [10.1108/S1049-2585202129].
Modeling Household Poverty Status Using Repeated Cross-sectional Surveys
zelli roberto;pittau maria grazia
2021
Abstract
The authors propose a framework to estimate the probability of being poor in a dynamic setting based on a large information set that includes individual characteristics and macro‐economic variables. The joint inclusion of personal characteristics along with contextual factors allows separation of idiosyncratic shocks from aggregate shocks affecting poverty. The authors combine data from different cross‐sectional surveys and fit a dynamic logistic hierarchical model within a Bayesian framework using standard Markov chain Monte Carlo techniques. The authors’ approach is exemplified by estimating household poverty status in Kyrgyz Republic as a function of time, regions, country, regional level variables and household level socio‐demographic characteristics.File | Dimensione | Formato | |
---|---|---|---|
Pittau_Modeling-household-poverty_2022.pdf
solo gestori archivio
Note: Articolo principale (capitolo del volume collettaneo)
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Contatta l'autore |
Pittau_Modeling-household-poverty_frontespizio_indice_2022.pdf.pdf
accesso aperto
Note: Frontespizio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
521.31 kB
Formato
Adobe PDF
|
521.31 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.