We discuss about the initial value problem for the Vlasov equation in case of unbounded total mass. The problem strongly depends on the dimension d of the physical space and on the singularity of the interaction. In particular, for d = 3, the more singular the interaction, the faster must be the spatial decay at infinity of the initial distribution. We describe also an application which gives rise to a viscous friction model.

The Vlasov Equation with Infinite Mass / Cavallaro, Guido. - (2021), pp. 115-128. - SPRINGER INDAM SERIES. [10.1007/978-3-030-82946-9].

The Vlasov Equation with Infinite Mass

Cavallaro, Guido
2021

Abstract

We discuss about the initial value problem for the Vlasov equation in case of unbounded total mass. The problem strongly depends on the dimension d of the physical space and on the singularity of the interaction. In particular, for d = 3, the more singular the interaction, the faster must be the spatial decay at infinity of the initial distribution. We describe also an application which gives rise to a viscous friction model.
2021
Recent Advances in Kinetic Equations and Applications
978-3-030-82945-2
Vlasov equation; infinite mass; viscous friction
02 Pubblicazione su volume::02a Capitolo o Articolo
The Vlasov Equation with Infinite Mass / Cavallaro, Guido. - (2021), pp. 115-128. - SPRINGER INDAM SERIES. [10.1007/978-3-030-82946-9].
File allegati a questo prodotto
File Dimensione Formato  
Cavallaro_postprint_The-Vlasov-equation_2021.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 279.67 kB
Formato Adobe PDF
279.67 kB Adobe PDF   Contatta l'autore
Cavallaro_The-Vlasov-equation_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.87 MB
Formato Adobe PDF
8.87 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1630188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact