We discuss about the initial value problem for the Vlasov equation in case of unbounded total mass. The problem strongly depends on the dimension d of the physical space and on the singularity of the interaction. In particular, for d = 3, the more singular the interaction, the faster must be the spatial decay at infinity of the initial distribution. We describe also an application which gives rise to a viscous friction model.
The Vlasov Equation with Infinite Mass / Cavallaro, Guido. - (2021), pp. 115-128. - SPRINGER INDAM SERIES. [10.1007/978-3-030-82946-9].
The Vlasov Equation with Infinite Mass
Cavallaro, Guido
2021
Abstract
We discuss about the initial value problem for the Vlasov equation in case of unbounded total mass. The problem strongly depends on the dimension d of the physical space and on the singularity of the interaction. In particular, for d = 3, the more singular the interaction, the faster must be the spatial decay at infinity of the initial distribution. We describe also an application which gives rise to a viscous friction model.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Cavallaro_postprint_The-Vlasov-equation_2021.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
279.67 kB
Formato
Adobe PDF
|
279.67 kB | Adobe PDF | Contatta l'autore |
|
Cavallaro_The-Vlasov-equation_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
8.87 MB
Formato
Adobe PDF
|
8.87 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


