Modeling the materials with a complex microstructure, such as metamaterials, is challenging especially in the dynamic regime. Higher-gradient models have been widely used for modeling the mechanical behavior of metamaterials. In dynamic loading problems, the inertia plays an important role. Including higher-order inertia in the model could possibly improve the accuracy of the model close to the eigenfrequencies of the structure. Such inertial terms have been presented in theory but they are not understood experimentally, therefore it has not been possible to quantify their value. Herein, we consider a macro-scale model for a pantographic structure and simulate a dynamic loading on it. We run the simulation for a range of frequencies of loading and for a number of arbitrary values for a higher-order inertial term that we have added to the model. The results show a clear relation between the value considered for the inertial term and the eigenfrequency of the structure that we get from the model. This result sheds light on finding an algorithm for determining the higher-order inertial terms experimentally in further studies.
Studying the higher-order inertia in the second-order theory of elasticity for modeling metamaterials / Shekarchizadeh, Navid; Bersani, Alberto Maria. - (2022), pp. 581-590. - ADVANCED STRUCTURED MATERIALS. [10.1007/978-3-031-04548-6_28].
Studying the higher-order inertia in the second-order theory of elasticity for modeling metamaterials
Navid Shekarchizadeh
Primo
Writing – Original Draft Preparation
;Alberto Maria BersaniSecondo
Writing – Review & Editing
2022
Abstract
Modeling the materials with a complex microstructure, such as metamaterials, is challenging especially in the dynamic regime. Higher-gradient models have been widely used for modeling the mechanical behavior of metamaterials. In dynamic loading problems, the inertia plays an important role. Including higher-order inertia in the model could possibly improve the accuracy of the model close to the eigenfrequencies of the structure. Such inertial terms have been presented in theory but they are not understood experimentally, therefore it has not been possible to quantify their value. Herein, we consider a macro-scale model for a pantographic structure and simulate a dynamic loading on it. We run the simulation for a range of frequencies of loading and for a number of arbitrary values for a higher-order inertial term that we have added to the model. The results show a clear relation between the value considered for the inertial term and the eigenfrequency of the structure that we get from the model. This result sheds light on finding an algorithm for determining the higher-order inertial terms experimentally in further studies.File | Dimensione | Formato | |
---|---|---|---|
Shekarchizadeh_Studying_2022.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Contatta l'autore |
Shekarchizadeh_ Studying_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
746.01 kB
Formato
Adobe PDF
|
746.01 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.