Bacillus subtilis is a wealth source of lipopeptide molecules such as iturins, surfactins and fengycins or plipastatins endowed with a range of biological activities. These molecules, designated secondary metabolites, are synthesized via non-ribosomal peptides synthesis (NRPS) machinery and are most often subjected to a complex regulation with involvement of several regulatory factors. To gain novel insights on mechanism regulating fengycin production, we investigated the effect of the fascinating polynucleotide phosphorylase (PNPase), as well as the effect of lipopeptide surfactin. Compared to the wild type, the production of fengycin in the mutant strains B. subtilis BBG235 and BBG236 altered for PNPase has not only decreased to about 70 and 40%, respectively, but also hampered its antifungal activity towards the plant pathogen Botrytis cinerea. On the other hand, mutant strains BBG231 (srfAA−) and BBG232 (srfAC−) displayed different levels of fengycin production. BBG231 had registered an important decrease in fengycin production, comparable to that observed for BBG235 or BBG236. This study permitted to establish that the products of pnpA gene (PNPase), and srfAA− (surfactin synthetase) are involved in fengycin production.

Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis / Yaseen, Y.; Diop, A.; Gancel, F.; Bechet, M.; Jacques, P.; Drider, D.. - (2018), pp. 783-791. [10.1007/s00203-018-1483-5].

Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis

Diop A.
;
2018

Abstract

Bacillus subtilis is a wealth source of lipopeptide molecules such as iturins, surfactins and fengycins or plipastatins endowed with a range of biological activities. These molecules, designated secondary metabolites, are synthesized via non-ribosomal peptides synthesis (NRPS) machinery and are most often subjected to a complex regulation with involvement of several regulatory factors. To gain novel insights on mechanism regulating fengycin production, we investigated the effect of the fascinating polynucleotide phosphorylase (PNPase), as well as the effect of lipopeptide surfactin. Compared to the wild type, the production of fengycin in the mutant strains B. subtilis BBG235 and BBG236 altered for PNPase has not only decreased to about 70 and 40%, respectively, but also hampered its antifungal activity towards the plant pathogen Botrytis cinerea. On the other hand, mutant strains BBG231 (srfAA−) and BBG232 (srfAC−) displayed different levels of fengycin production. BBG231 had registered an important decrease in fengycin production, comparable to that observed for BBG235 or BBG236. This study permitted to establish that the products of pnpA gene (PNPase), and srfAA− (surfactin synthetase) are involved in fengycin production.
2018
O
B. subtilis; Fengycin; Polynucleotide phosphorylase; Surfactin; Bacillus subtilis; Bacterial Proteins; Gene Expression; Gene Expression Regulation, Bacterial; Lipopeptides; Mutation; Operon; Polyribonucleotide Nucleotidyltransferase
02 Pubblicazione su volume::02a Capitolo o Articolo
Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis / Yaseen, Y.; Diop, A.; Gancel, F.; Bechet, M.; Jacques, P.; Drider, D.. - (2018), pp. 783-791. [10.1007/s00203-018-1483-5].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1555351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 17
social impact