The organization of eukaryotic chromosomes into euchromatin and heterochromatin represents an enigmatic aspect of genome evolution. Constitutive heterochromatin is a basic, yet still poorly understood component of eukaryotic genomes and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Drosophila melanogaster polytene chromosomes do not seem to be particularly useful to map heterochromatin sequences because the typical features of heterochromatin, organized as it is into a chromocenter, limit cytogenetic analysis. In contrast, constitutive heterochromatin has been well-defined at the cytological level in mitotic chromosomes of neuroblasts and has been subdivided into several bands with differential staining properties. Fluorescence in situ hybridization (FISH) using Bacterial Artificial Chromosomes (BAC) probes that carry large genomic portions defined by sequence annotation has yielded a "revolution" in the field of cytogenetics because it has allowed the mapping of multiple genes at once, thus rendering constitutive heterochromatin amenable to easy and fast cytogenetics analyses. Indeed, BAC-based FISH approaches on Drosophila mitotic chromosomes have made it possible to correlate genomic sequences to their cytogenetic location, aiming to build an integrated map of the pericentric heterochromatin. This chapter presents our standard protocols for BAC-based FISH, aimed at mapping large chromosomal regions of mitotic heterochromatin in Drosophila melanogaster.

Fluorescent in situ hybridization with Bacterial Artificial Chromosomes DNAs to mitotic heterochromatin of Drosophila / Dimitri, Patrizio; Accardo, Maria Carmela. - STAMPA. - 659(2010), pp. 389-400. [10.1007/978-1-60761-789-1_30].

Fluorescent in situ hybridization with Bacterial Artificial Chromosomes DNAs to mitotic heterochromatin of Drosophila.

DIMITRI, Patrizio;ACCARDO, Maria Carmela
2010

Abstract

The organization of eukaryotic chromosomes into euchromatin and heterochromatin represents an enigmatic aspect of genome evolution. Constitutive heterochromatin is a basic, yet still poorly understood component of eukaryotic genomes and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Drosophila melanogaster polytene chromosomes do not seem to be particularly useful to map heterochromatin sequences because the typical features of heterochromatin, organized as it is into a chromocenter, limit cytogenetic analysis. In contrast, constitutive heterochromatin has been well-defined at the cytological level in mitotic chromosomes of neuroblasts and has been subdivided into several bands with differential staining properties. Fluorescence in situ hybridization (FISH) using Bacterial Artificial Chromosomes (BAC) probes that carry large genomic portions defined by sequence annotation has yielded a "revolution" in the field of cytogenetics because it has allowed the mapping of multiple genes at once, thus rendering constitutive heterochromatin amenable to easy and fast cytogenetics analyses. Indeed, BAC-based FISH approaches on Drosophila mitotic chromosomes have made it possible to correlate genomic sequences to their cytogenetic location, aiming to build an integrated map of the pericentric heterochromatin. This chapter presents our standard protocols for BAC-based FISH, aimed at mapping large chromosomal regions of mitotic heterochromatin in Drosophila melanogaster.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/155508
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact