In this paper we report on some classical and more recent results about representation formulas for generalized solutions of the evolution partial differential equation ut + H(x,Du) = 0 , (x, t) 2 IRN × (0,+1) (1.1) We consider here only the case where H = H(x, p) is a convex function with respect to the p variable. In this setting, representation formulas can be obtained by exploiting the well - known connection existing via convex duality between the Hamilton - Jacobi equation (1.1) with Calculus of Variations or, more generally, Optimal Control problems.

Representations of solutions of Hamilton-Jacobi equations / CAPUZZO DOLCETTA, Italo. - STAMPA. - 54(2003), pp. 74-90.

Representations of solutions of Hamilton-Jacobi equations

CAPUZZO DOLCETTA, Italo
2003

Abstract

In this paper we report on some classical and more recent results about representation formulas for generalized solutions of the evolution partial differential equation ut + H(x,Du) = 0 , (x, t) 2 IRN × (0,+1) (1.1) We consider here only the case where H = H(x, p) is a convex function with respect to the p variable. In this setting, representation formulas can be obtained by exploiting the well - known connection existing via convex duality between the Hamilton - Jacobi equation (1.1) with Calculus of Variations or, more generally, Optimal Control problems.
2003
Progress in Nonlinear Differential Equations and Applications
02 Pubblicazione su volume::02a Capitolo o Articolo
Representations of solutions of Hamilton-Jacobi equations / CAPUZZO DOLCETTA, Italo. - STAMPA. - 54(2003), pp. 74-90.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/148471
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact