In this paper, we propose a quaternion widely linear approach for the forecasting of environmental data, in order to predict the air quality. Specifically, the proposed approach is based on a fusion of heterogeneous data via vector spaces. A quaternion data vector has been constructed by concatenating a set of four different measurements related to the air quality (such as CO, NO:2, SO:2, PM:10, an similar ones), then a Quaternion LMS (QLMS) algorithm is applied to predict next values from the previously ones. Moreover, when all the considered measurements are strongly correlated each other, the Widely Linear (WL) model for the quaternion domain is capable to benefit from correlations and to obtain improved accuracies in prediction. Some experimental results, evaluated on two different real world data sets, show the effectiveness of the proposed approach.

Quaternion widely linear forecasting of air quality / Scarpiniti, M.; Comminiello, D.; Muciaccia, F.; Uncini, A.. - (2021), pp. 393-403. - SMART INNOVATION, SYSTEMS AND TECHNOLOGIES. [10.1007/978-981-15-5093-5_35].

Quaternion widely linear forecasting of air quality

Scarpiniti M.;Comminiello D.;Muciaccia F.;Uncini A.
2021

Abstract

In this paper, we propose a quaternion widely linear approach for the forecasting of environmental data, in order to predict the air quality. Specifically, the proposed approach is based on a fusion of heterogeneous data via vector spaces. A quaternion data vector has been constructed by concatenating a set of four different measurements related to the air quality (such as CO, NO:2, SO:2, PM:10, an similar ones), then a Quaternion LMS (QLMS) algorithm is applied to predict next values from the previously ones. Moreover, when all the considered measurements are strongly correlated each other, the Widely Linear (WL) model for the quaternion domain is capable to benefit from correlations and to obtain improved accuracies in prediction. Some experimental results, evaluated on two different real world data sets, show the effectiveness of the proposed approach.
2021
Progresses in Artificial Intelligence and Neural Systems
978-981-15-5092-8
978-981-15-5093-5
air pollution; forecasting; quaternion; quaternion LMS (QLMS); widely linear model
02 Pubblicazione su volume::02a Capitolo o Articolo
Quaternion widely linear forecasting of air quality / Scarpiniti, M.; Comminiello, D.; Muciaccia, F.; Uncini, A.. - (2021), pp. 393-403. - SMART INNOVATION, SYSTEMS AND TECHNOLOGIES. [10.1007/978-981-15-5093-5_35].
File allegati a questo prodotto
File Dimensione Formato  
Scarpiniti_post-print_Quaternion_2021.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 521.08 kB
Formato Adobe PDF
521.08 kB Adobe PDF   Contatta l'autore
Scarpiniti_Quaternion_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 338.41 kB
Formato Adobe PDF
338.41 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1476991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact