Here we show a hidden regularity result for nonlinear wave equations with an integral term of convolution type and Dirichlet boundary conditions. Under general assumptions on the nonlinear term and on the integral kernel we are able to state results about global existence of strong and mild solutions without any further smallness on the initial data. Then we define the trace of the normal derivative of the solution showing a regularity result. In such a way we extend to integrodifferential equations with nonlinear term well-known results available in the literature for linear wave equations with memory.

A Semilinear Integro-Differential Equation: Global Existence and Hidden Regularity / Loreti, P.; Sforza, D.. - (2019), pp. 157-180. - SPRINGER INDAM SERIES. [10.1007/978-3-030-17949-6_9].

A Semilinear Integro-Differential Equation: Global Existence and Hidden Regularity

Loreti P.;Sforza D.
2019

Abstract

Here we show a hidden regularity result for nonlinear wave equations with an integral term of convolution type and Dirichlet boundary conditions. Under general assumptions on the nonlinear term and on the integral kernel we are able to state results about global existence of strong and mild solutions without any further smallness on the initial data. Then we define the trace of the normal derivative of the solution showing a regularity result. In such a way we extend to integrodifferential equations with nonlinear term well-known results available in the literature for linear wave equations with memory.
2019
Springer INdAM Series
978-3-030-17948-9
978-3-030-17949-6
Hidden regularity; Partial differential equations; Positive definite kernels
02 Pubblicazione su volume::02a Capitolo o Articolo
A Semilinear Integro-Differential Equation: Global Existence and Hidden Regularity / Loreti, P.; Sforza, D.. - (2019), pp. 157-180. - SPRINGER INDAM SERIES. [10.1007/978-3-030-17949-6_9].
File allegati a questo prodotto
File Dimensione Formato  
Loreti_Semilinear_2018.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 284.74 kB
Formato Adobe PDF
284.74 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1474889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact