A multimethodological method based on environmental, stress–strain, microseismic, and ambient seismic noise monitoring is here presented, with a view to identifying non-linearity of thermally-induced deformation of jointed rock masses at different dimensional scales. Rock masses experience non-negligible deformation cycles due to the continuous fluctuations of their surficial temperatures. However, the interpretation of such strain effects, in terms of the ratio between elastic and inelastic percentages, is still debated. In particular, the relation between microseismic emissions, considered as primary indicators of crack-growth related energy release, and resonant frequencies fluctuations of rock structures, witnesses of the thermally-induced effect at the macro- or structure-scale, have not been yet studied within a coupled framework. The combination of different approaches able to investigate the behavior of rock masses from micro- to macro-scale, then from fracture-scale to joint-isolated rock blocks up to rock structures, could provide new insights and perspectives on the effects related to shallow thermal stresses fluctuations. This paper presents the preliminary outcomes from two case studies, the Acuto experimental test-site (Italy) and the Wied Il-Mielaħ sea arch (Malta), where multiparametric monitoring surveys were conducted and are still ongoing, aiming at the assessment of the cause-to-effect relation between near-surface thermal stresses and induced strains. Data analysis was carried out following different approaches, with a particular emphasis on the Acuto test-site dataset recorded so far, allowing to establish a well-constrained correlation among temperature fluctuations and rock mass deformation both at the daily and seasonal scale.
Multimethodological study of non-linear strain effects induced by thermal stresses on jointed rock masses / Grechi, Guglielmo; Martino, Salvatore. - (2021), pp. 315-321. - ICL CONTRIBUTION TO LANDSLIDE DISASTER RISK REDUCTION. [10.1007/978-3-030-60319-9_35].
Multimethodological study of non-linear strain effects induced by thermal stresses on jointed rock masses
Grechi, Guglielmo
Primo
;Martino, SalvatoreSecondo
2021
Abstract
A multimethodological method based on environmental, stress–strain, microseismic, and ambient seismic noise monitoring is here presented, with a view to identifying non-linearity of thermally-induced deformation of jointed rock masses at different dimensional scales. Rock masses experience non-negligible deformation cycles due to the continuous fluctuations of their surficial temperatures. However, the interpretation of such strain effects, in terms of the ratio between elastic and inelastic percentages, is still debated. In particular, the relation between microseismic emissions, considered as primary indicators of crack-growth related energy release, and resonant frequencies fluctuations of rock structures, witnesses of the thermally-induced effect at the macro- or structure-scale, have not been yet studied within a coupled framework. The combination of different approaches able to investigate the behavior of rock masses from micro- to macro-scale, then from fracture-scale to joint-isolated rock blocks up to rock structures, could provide new insights and perspectives on the effects related to shallow thermal stresses fluctuations. This paper presents the preliminary outcomes from two case studies, the Acuto experimental test-site (Italy) and the Wied Il-Mielaħ sea arch (Malta), where multiparametric monitoring surveys were conducted and are still ongoing, aiming at the assessment of the cause-to-effect relation between near-surface thermal stresses and induced strains. Data analysis was carried out following different approaches, with a particular emphasis on the Acuto test-site dataset recorded so far, allowing to establish a well-constrained correlation among temperature fluctuations and rock mass deformation both at the daily and seasonal scale.File | Dimensione | Formato | |
---|---|---|---|
Grechi_Multimethodological_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
810.39 kB
Formato
Adobe PDF
|
810.39 kB | Adobe PDF | Contatta l'autore |
Frontespizio ed indice.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
62 kB
Formato
Adobe PDF
|
62 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.