The present article deals with various generating series and group schemes (not necessarily affine ones) associated with MZVs. Our developments are motivated by Ecalle’s mould calculus approach to the latter. We propose in particular a Hopf algebra–type encoding of symmetril moulds and introduce a new resummation process for MZVs.
Symmetril Moulds, Generic Group Schemes, Resummation of MZVs / Malvenuto, C.; Patras, F.. - (2020), pp. 377-398. - SPRINGER PROCEEDINGS IN MATHEMATICS & STATISTICS. [10.1007/978-3-030-37031-2_14].
Symmetril Moulds, Generic Group Schemes, Resummation of MZVs
Malvenuto C.;
2020
Abstract
The present article deals with various generating series and group schemes (not necessarily affine ones) associated with MZVs. Our developments are motivated by Ecalle’s mould calculus approach to the latter. We propose in particular a Hopf algebra–type encoding of symmetril moulds and introduce a new resummation process for MZVs.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Malvenuto_Symmetril-moulds_2020.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
294.9 kB
Formato
Adobe PDF
|
294.9 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.