Phenomena are usually multidimensional and their complexity cannot be directly explored via observable variables. For this reason, a hierarchical structure of nested latent concepts representing different levels of abstraction of the phenomenon under study may be considered. In this paper, we provide a comparison between a procedure based on hierarchical clustering methods and a novelty model recently proposed, called Ultrametric Correlation Matrix (UCM) model. The latter aims at reconstructing the data correlation matrix via an ultrametric correlation matrix and supplies a parsimonious representation of multidimensional phenomena through a partition of the observable variables defining a reduced number of latent concepts. Moreover, the UCM model highlights two main features related to concepts: the correlation among concepts and the internal consistency of a concept. The performances of the UCM model and the procedure based on hierarchical clustering methods are illustrated by an application to the Holzinger data set which represents a real demonstration of a hierarchical factorial structure. The evaluation of the different methodological approaches—the UCM model and the procedure based on hierarchical clustering methods—is provided in terms of classification of variables and goodness of fit, other than of their suitability to analyse bottom-up latent structures of variables.

Exploring hierarchical concepts: theoretical and application comparisons / Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - (2020), pp. 315-328. - BEHAVIORMETRICS. [10.1007/978-981-15-2700-5_19].

Exploring hierarchical concepts: theoretical and application comparisons

Cavicchia, Carlo;Vichi, Maurizio
;
Zaccaria, Giorgia
2020

Abstract

Phenomena are usually multidimensional and their complexity cannot be directly explored via observable variables. For this reason, a hierarchical structure of nested latent concepts representing different levels of abstraction of the phenomenon under study may be considered. In this paper, we provide a comparison between a procedure based on hierarchical clustering methods and a novelty model recently proposed, called Ultrametric Correlation Matrix (UCM) model. The latter aims at reconstructing the data correlation matrix via an ultrametric correlation matrix and supplies a parsimonious representation of multidimensional phenomena through a partition of the observable variables defining a reduced number of latent concepts. Moreover, the UCM model highlights two main features related to concepts: the correlation among concepts and the internal consistency of a concept. The performances of the UCM model and the procedure based on hierarchical clustering methods are illustrated by an application to the Holzinger data set which represents a real demonstration of a hierarchical factorial structure. The evaluation of the different methodological approaches—the UCM model and the procedure based on hierarchical clustering methods—is provided in terms of classification of variables and goodness of fit, other than of their suitability to analyse bottom-up latent structures of variables.
2020
Advanced studies in behaviormetrics and data science. Essays in honor of Akinori Okada
978-981-15-2699-2
ultrametric correlation matrix; hierarchical clustering; latent concepts
02 Pubblicazione su volume::02a Capitolo o Articolo
Exploring hierarchical concepts: theoretical and application comparisons / Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - (2020), pp. 315-328. - BEHAVIORMETRICS. [10.1007/978-981-15-2700-5_19].
File allegati a questo prodotto
File Dimensione Formato  
Cavicchia_Exploring-hierarchical-concepts_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 425.59 kB
Formato Adobe PDF
425.59 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1391004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact