Part A:PDE and Conservation Laws. Basic results on the formal theory of PDE. Pseudogroups and PDE. The Euler-Lagrange operator for Lagrangians of any order. Cartan form and Noether conservation laws for Lagrangian of any order. Symmetry properties and dynamic conservation laws. Part B: Quantized PDE and Conservation Laws. Quantum charges. Quantum situs. Geometric theory of quantized PDE. Quantum cobordism and Dirac's approach to quantization. Applications: Klein-Gordon equation; Maxwell equation; Dirac equation; Einstein equation; Yang-Mills equation. Appendix. Topological vector spaces, $ C^*$-algebras and spectral theory. Local characterization of some geometric structures related to PDE.

Dynamic conservation laws / Prastaro, Agostino. - STAMPA. - (1985), pp. 283-420.

Dynamic conservation laws.

PRASTARO, Agostino
1985

Abstract

Part A:PDE and Conservation Laws. Basic results on the formal theory of PDE. Pseudogroups and PDE. The Euler-Lagrange operator for Lagrangians of any order. Cartan form and Noether conservation laws for Lagrangian of any order. Symmetry properties and dynamic conservation laws. Part B: Quantized PDE and Conservation Laws. Quantum charges. Quantum situs. Geometric theory of quantized PDE. Quantum cobordism and Dirac's approach to quantization. Applications: Klein-Gordon equation; Maxwell equation; Dirac equation; Einstein equation; Yang-Mills equation. Appendix. Topological vector spaces, $ C^*$-algebras and spectral theory. Local characterization of some geometric structures related to PDE.
1985
GEOMETRODYNAMICS PROCEEDINGS 1985
9789971978631
02 Pubblicazione su volume::02a Capitolo o Articolo
Dynamic conservation laws / Prastaro, Agostino. - STAMPA. - (1985), pp. 283-420.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/137779
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact