In this paper, we provide an overview on the underlying response variable (URV) model-based approach to cluster and, optionally, simultaneously reduce ordinal and, optionally, continuous variables. We summarize and compare its main features discussing some key issues. An example of application to real data is illustrated comparing and discussing clustering performances.

An overview on the URV model-based approach to cluster mixed-type data / Ranalli, M.; Rocci, R.. - (2019), pp. 45-53. - STUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION. [10.1007/978-3-030-21140-0_5].

An overview on the URV model-based approach to cluster mixed-type data

Ranalli M.;Rocci R.
2019

Abstract

In this paper, we provide an overview on the underlying response variable (URV) model-based approach to cluster and, optionally, simultaneously reduce ordinal and, optionally, continuous variables. We summarize and compare its main features discussing some key issues. An example of application to real data is illustrated comparing and discussing clustering performances.
2019
Statistical Learning of Complex Data
978-3-030-21139-4
978-3-030-21140-0
composite likelihood; finite mixture models; ordinal data; URV
02 Pubblicazione su volume::02a Capitolo o Articolo
An overview on the URV model-based approach to cluster mixed-type data / Ranalli, M.; Rocci, R.. - (2019), pp. 45-53. - STUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION. [10.1007/978-3-030-21140-0_5].
File allegati a questo prodotto
File Dimensione Formato  
Ranalli_overwiew_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.5 MB
Formato Adobe PDF
4.5 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1348835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact