The use of topological invariants to describe geometric phases of quantum matter has become an essential tool in modern solid state physics. The first instance of this paradigmatic trend can be traced to the study of the quantum Hall effect, in which the Chern number underlies the quantization of the transverse Hall conductivity. More recently, in the framework of time-reversal symmetric topological insulators and quantum spin Hall systems, a new topological classification has been proposed by Fu, Kane and Mele, where the label takes value in Z2. We illustrate how both the Chern number c 2 Z and the Fu–Kane–Mele invariant ı 2 Z2 of 2-dimensional topological insulators can be characterized as topological obstructions. Indeed, c quantifies the obstruction to the existence of a frame of Bloch states for the crystal which is both continuous and periodic with respect to the crystal momentum. Instead, ı measures the possibility to impose a further time-reversal symmetry constraint on the Bloch frame.

Chern and Fu–Kane–Mele invariants as topological obstructions / Monaco, Domenico. - (2017), pp. 201-222. - SPRINGER INDAM SERIES. [10.1007/978-3-319-58904-6_12].

Chern and Fu–Kane–Mele invariants as topological obstructions

Monaco, Domenico
2017

Abstract

The use of topological invariants to describe geometric phases of quantum matter has become an essential tool in modern solid state physics. The first instance of this paradigmatic trend can be traced to the study of the quantum Hall effect, in which the Chern number underlies the quantization of the transverse Hall conductivity. More recently, in the framework of time-reversal symmetric topological insulators and quantum spin Hall systems, a new topological classification has been proposed by Fu, Kane and Mele, where the label takes value in Z2. We illustrate how both the Chern number c 2 Z and the Fu–Kane–Mele invariant ı 2 Z2 of 2-dimensional topological insulators can be characterized as topological obstructions. Indeed, c quantifies the obstruction to the existence of a frame of Bloch states for the crystal which is both continuous and periodic with respect to the crystal momentum. Instead, ı measures the possibility to impose a further time-reversal symmetry constraint on the Bloch frame.
2017
Advances in Quantum Mechanics
Chern numbers; Fu–Kane–Mele invariants; obstruction theory; quantum hall effect; quantum spin Hall effect; topological insulators
02 Pubblicazione su volume::02a Capitolo o Articolo
Chern and Fu–Kane–Mele invariants as topological obstructions / Monaco, Domenico. - (2017), pp. 201-222. - SPRINGER INDAM SERIES. [10.1007/978-3-319-58904-6_12].
File allegati a questo prodotto
File Dimensione Formato  
Monaco_Chern_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 361.15 kB
Formato Adobe PDF
361.15 kB Adobe PDF   Contatta l'autore
Monaco_copertina-frontespizio-indice_Chern_2017.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 643.25 kB
Formato Adobe PDF
643.25 kB Adobe PDF   Contatta l'autore
Monaco_preprint_Chern_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 218.29 kB
Formato Adobe PDF
218.29 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1327327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact