Accurate Value at Risk measurement often requires estimation of complex dynamic models where usually the parameters enter nonlinearly the quantile estimation equation. IN this paper we address the problem of estimation of the parameters of a class of conditionally autoregressive Value at Risk models by adapting the Majorizing-Minorizing algorithm of Hunter and Lange (2000)

Estimation of dynamic quantile models via the MM algorithm / Poggioni, Fabrizio; Bernardi, Mauro; Petrella, Lea. - (2019), pp. 1033-1038.

Estimation of dynamic quantile models via the MM algorithm

Fabrizio Poggioni;Lea Petrella
2019

Abstract

Accurate Value at Risk measurement often requires estimation of complex dynamic models where usually the parameters enter nonlinearly the quantile estimation equation. IN this paper we address the problem of estimation of the parameters of a class of conditionally autoregressive Value at Risk models by adapting the Majorizing-Minorizing algorithm of Hunter and Lange (2000)
2019
Smart Statistics for Smart Applications
9788891915108
Conditional autoregressive quantiles; CaViaR; MM algorithm; Value at Risk
02 Pubblicazione su volume::02a Capitolo o Articolo
Estimation of dynamic quantile models via the MM algorithm / Poggioni, Fabrizio; Bernardi, Mauro; Petrella, Lea. - (2019), pp. 1033-1038.
File allegati a questo prodotto
File Dimensione Formato  
Petrella_Estimation-of-dynamic_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1316104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact