For a class of fully nonlinear equations having second order operators which may be singular or degenerate when the gradient of the solutions vanishes, and having first order terms with power growth, we prove the existence and uniqueness of suitably defined viscosity solutions of Dirichlet problems and we further show that it is a Lipschitz continuous function.
Dirichlet problems for fully nonlinear equations with “subquadratic” hamiltonians / Birindelli, I.; Demengel, F.; Leoni, F.. - (2019), pp. 107-127. - SPRINGER INDAM SERIES. [10.1007/978-3-030-18921-1_2].
Dirichlet problems for fully nonlinear equations with “subquadratic” hamiltonians
Birindelli I.
;Demengel F.;Leoni F.
2019
Abstract
For a class of fully nonlinear equations having second order operators which may be singular or degenerate when the gradient of the solutions vanishes, and having first order terms with power growth, we prove the existence and uniqueness of suitably defined viscosity solutions of Dirichlet problems and we further show that it is a Lipschitz continuous function.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Birindelli_Dirichlet-problems_2019.pdf
solo gestori archivio
Note: https://www.springer.com/gp/book/9783030189204
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
341.91 kB
Formato
Adobe PDF
|
341.91 kB | Adobe PDF | Contatta l'autore |
Birindelli_frontespizio-indice-quarta di copertina_Dirichlet-problems_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
60.93 kB
Formato
Adobe PDF
|
60.93 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.