For a class of fully nonlinear equations having second order operators which may be singular or degenerate when the gradient of the solutions vanishes, and having first order terms with power growth, we prove the existence and uniqueness of suitably defined viscosity solutions of Dirichlet problems and we further show that it is a Lipschitz continuous function.

Dirichlet problems for fully nonlinear equations with “subquadratic” hamiltonians / Birindelli, I.; Demengel, F.; Leoni, F.. - (2019), pp. 107-127. - SPRINGER INDAM SERIES. [10.1007/978-3-030-18921-1_2].

Dirichlet problems for fully nonlinear equations with “subquadratic” hamiltonians

Birindelli I.
;
Demengel F.;Leoni F.
2019

Abstract

For a class of fully nonlinear equations having second order operators which may be singular or degenerate when the gradient of the solutions vanishes, and having first order terms with power growth, we prove the existence and uniqueness of suitably defined viscosity solutions of Dirichlet problems and we further show that it is a Lipschitz continuous function.
2019
Springer INdAM Series
978-3-030-18920-4
978-3-030-18921-1
Degenerate and singular fully nonlinear elliptic PDE, Dirichlet problem, inhomogenous equations
02 Pubblicazione su volume::02a Capitolo o Articolo
Dirichlet problems for fully nonlinear equations with “subquadratic” hamiltonians / Birindelli, I.; Demengel, F.; Leoni, F.. - (2019), pp. 107-127. - SPRINGER INDAM SERIES. [10.1007/978-3-030-18921-1_2].
File allegati a questo prodotto
File Dimensione Formato  
Birindelli_Dirichlet-problems_2019.pdf

solo gestori archivio

Note: https://www.springer.com/gp/book/9783030189204
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 341.91 kB
Formato Adobe PDF
341.91 kB Adobe PDF   Contatta l'autore
Birindelli_frontespizio-indice-quarta di copertina_Dirichlet-problems_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 60.93 kB
Formato Adobe PDF
60.93 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1311185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact