Curriculum learning is often employed in deep reinforcement learning to let the agent progress more quickly towards better behaviors. Numerical methods for curriculum learning in the literature provides only initial heuristic solutions, with little to no guarantee on their quality. We define a new gray-box function that, including a suitable scheduling problem, can be effectively used to reformulate the curriculum learning problem. We propose different efficient numerical methods to address this gray-box reformulation. Preliminary numerical results on a bench- mark task in the curriculum learning literature show the viability of the proposed approach.
A Gray-Box Approach for Curriculum Learning / Foglino, Francesco; Leonetti, Matteo; Sagratella, Simone; Seccia, Ruggiero. - (2019), pp. 720-729. - ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING. [10.1007/978-3-030-21803-4_72].
A Gray-Box Approach for Curriculum Learning
Leonetti, Matteo;Sagratella, Simone
;Seccia, Ruggiero
2019
Abstract
Curriculum learning is often employed in deep reinforcement learning to let the agent progress more quickly towards better behaviors. Numerical methods for curriculum learning in the literature provides only initial heuristic solutions, with little to no guarantee on their quality. We define a new gray-box function that, including a suitable scheduling problem, can be effectively used to reformulate the curriculum learning problem. We propose different efficient numerical methods to address this gray-box reformulation. Preliminary numerical results on a bench- mark task in the curriculum learning literature show the viability of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
Foligno_Postprint_A-Gray-Box_2020.pdf
Open Access dal 21/01/2020
Note: https://link.springer.com/chapter/10.1007/978-3-030-21803-4_72
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
396.14 kB
Formato
Adobe PDF
|
396.14 kB | Adobe PDF | |
Foligno_Frontespizio-indice_A-Gray-Box_2020.pdf
solo gestori archivio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
253.07 kB
Formato
Adobe PDF
|
253.07 kB | Adobe PDF | Contatta l'autore |
Foligno_A-Gray-Box_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
299.74 kB
Formato
Adobe PDF
|
299.74 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.