With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f - and r-modes, the different ways that a neutron star could form and sustain a non- axisymmetric quadrupolar “mountain” deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.
Gravitational Waves from Single Neutron Stars: An Advanced Detector Era Survey / Glampedakis, Kostas; Gualtieri, Leonardo. - (2018), pp. 673-736. [10.1007/978-3-319-97616-7_12].
Gravitational Waves from Single Neutron Stars: An Advanced Detector Era Survey
Gualtieri, Leonardo
2018
Abstract
With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f - and r-modes, the different ways that a neutron star could form and sustain a non- axisymmetric quadrupolar “mountain” deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.File | Dimensione | Formato | |
---|---|---|---|
Glampedakis_Gravitational Waves_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.