We present several deep learning models for assessing the morphometric delity of deep grey matter region models extracted from brain MRI. We test three dierent convolutional neural net architectures (VGGNet, ResNet and Inception) over 2D maps of geometric features. Further, we present a novel geometry feature augmentation technique based on parametric spherical mapping. Finally, we present an approach for model decision visualization, allowing human raters to see the areas of subcortical shapes most likely to be deemed of failing quality by the machine. Our training data is comprised of 5200 subjects from the ENIGMA Schizophrenia MRI cohorts, and our test dataset contains 1500 subjects from the ENIGMA Major Depressive Disorder cohorts. Our final models reduce human rater time by 46-70%. ResNet outperforms VGGNet and Inception for all of our predictive tasks.

Deep Learning for Quality Control of Subcortical Brain 3D Shape Models / Petrov, Dmitry; Gutman, Boris A.; Kuznetsov, Egor; van Erp, Theo G. M.; Turner, Jessica A.; Schmaal, Lianne; Veltman, Dick; Wang, Lei; Alpert, Kathryn; Isaev, Dmitry; Zavaliangos-Petropulu, Artemis; Ching, Christopher R. K.; Calhoun, Vince; Glahn, David; Satterthwaite, Theodore D.; Andreas Andreassen, Ole; Borgwardt, Stefan; Howells, Fleur; Groenewold, Nynke; Voineskos, Aristotle; Radua, Joaquim; Potkin, Steven G.; Crespo-Facorro, Benedicto; Tordesillas-Gutirrez, Diana; Shen, Li; Lebedeva, Irina; Spalletta, Gianfranco; Donohoe, Gary; Kochunov, Peter; Rosa, Pedro G. P.; James, Anthony; Dannlowski, Udo; Baune, Bernhard T.; Aleman, Andr; Gotlib, Ian H.; Walter, Henrik; Walter, Martin; Soares, Jair C.; Ehrlich, Stefan; Gur, Ruben C.; Trung Doan, N.; Agartz, Ingrid; Westlye, Lars T.; Harrisberger, Fabienne; Riecher-R ossler, Anita; Uhlmann, Anne; Stein, Dan J.; Dickie, Erin W.; Pomarol-Clotet, Edith; Fuentes-Claramonte, Paola; Jorge Canales-Rodrguez, Erick; Salvador, Raymond; Huang, Alexander J.; Roiz-Santiaez, Roberto; Cong, Shan; Tomyshev, Alexander; Piras, Fabrizio; Vecchio, Daniela; Banaj, Nerisa; Ciullo, Valentina; Hong, Elliot; Busatto, Geraldo; Zanetti, Marcus V.; Serpa, Mauricio H.; Cervenka, Simon; Kelly, Sinead; Grotegerd, Dominik; Sacchet, Matthew D.; Veer, Ilya M.; Li, Meng; Wu, Mon-Ju; Irungu, Benson; Thompson, Esther Walton and Paul M.; the ENIGMA consortium, For. - (2018).

Deep Learning for Quality Control of Subcortical Brain 3D Shape Models

Fabrizio Piras;Daniela Vecchio;Valentina Ciullo;
2018

Abstract

We present several deep learning models for assessing the morphometric delity of deep grey matter region models extracted from brain MRI. We test three dierent convolutional neural net architectures (VGGNet, ResNet and Inception) over 2D maps of geometric features. Further, we present a novel geometry feature augmentation technique based on parametric spherical mapping. Finally, we present an approach for model decision visualization, allowing human raters to see the areas of subcortical shapes most likely to be deemed of failing quality by the machine. Our training data is comprised of 5200 subjects from the ENIGMA Schizophrenia MRI cohorts, and our test dataset contains 1500 subjects from the ENIGMA Major Depressive Disorder cohorts. Our final models reduce human rater time by 46-70%. ResNet outperforms VGGNet and Inception for all of our predictive tasks.
2018
Shape in Medical Imaging
deep learning, subcortical shape analysis, quality checking
02 Pubblicazione su volume::02a Capitolo o Articolo
Deep Learning for Quality Control of Subcortical Brain 3D Shape Models / Petrov, Dmitry; Gutman, Boris A.; Kuznetsov, Egor; van Erp, Theo G. M.; Turner, Jessica A.; Schmaal, Lianne; Veltman, Dick; Wang, Lei; Alpert, Kathryn; Isaev, Dmitry; Zavaliangos-Petropulu, Artemis; Ching, Christopher R. K.; Calhoun, Vince; Glahn, David; Satterthwaite, Theodore D.; Andreas Andreassen, Ole; Borgwardt, Stefan; Howells, Fleur; Groenewold, Nynke; Voineskos, Aristotle; Radua, Joaquim; Potkin, Steven G.; Crespo-Facorro, Benedicto; Tordesillas-Gutirrez, Diana; Shen, Li; Lebedeva, Irina; Spalletta, Gianfranco; Donohoe, Gary; Kochunov, Peter; Rosa, Pedro G. P.; James, Anthony; Dannlowski, Udo; Baune, Bernhard T.; Aleman, Andr; Gotlib, Ian H.; Walter, Henrik; Walter, Martin; Soares, Jair C.; Ehrlich, Stefan; Gur, Ruben C.; Trung Doan, N.; Agartz, Ingrid; Westlye, Lars T.; Harrisberger, Fabienne; Riecher-R ossler, Anita; Uhlmann, Anne; Stein, Dan J.; Dickie, Erin W.; Pomarol-Clotet, Edith; Fuentes-Claramonte, Paola; Jorge Canales-Rodrguez, Erick; Salvador, Raymond; Huang, Alexander J.; Roiz-Santiaez, Roberto; Cong, Shan; Tomyshev, Alexander; Piras, Fabrizio; Vecchio, Daniela; Banaj, Nerisa; Ciullo, Valentina; Hong, Elliot; Busatto, Geraldo; Zanetti, Marcus V.; Serpa, Mauricio H.; Cervenka, Simon; Kelly, Sinead; Grotegerd, Dominik; Sacchet, Matthew D.; Veer, Ilya M.; Li, Meng; Wu, Mon-Ju; Irungu, Benson; Thompson, Esther Walton and Paul M.; the ENIGMA consortium, For. - (2018).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1213788
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact