As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 humanrated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.

Machine learning for large-scale quality control of 3D shape models in neuroimaging / Petrov, Dmitry; Gutman, Boris A.; (Julie) Yu, Shih-Hua; van Erp, Theo G. M.; Turner, Jessica A.; Schmaal, Lianne; Veltman, Dick; Wang, Lei; Alpert, Kathryn; Isaev, Dmitry; Zavaliangos-Petropulu, Artemis; Ching, Christopher R. K.; Calhoun, Vince; Glahn, David; Satterthwaite, Ted; Andreas Andreasen, Ole; Borgwardt, Stefan; Howells, Fleur; Groenewold, Nynke; Voineskos, Aristotle; Radua, Joaquim; Potkin, Steven G.; Crespo-Facorro, Benedicto; Tordesillas-Gutierrez, Diana; Shen, Li; Lebedeva, Irina; Spalletta, Gianfranco; Donohoe, Gary; Kochunov, Peter; Rosa, Pedro G. P.; James, Anthony; Dannlowski, Udo; Baune, Bernhard T.; Aleman, Andre; Gotlib, Ian H.; Walter, Henrik; Walter, Martin; Soares, Jair C.; Gur, Ruben C.; Trung Doan, N.; Agartz, Ingrid; Westlye, Lars T.; Harrisberger, Fabienne; Riecher-R ossler, Anita; Uhlmann, Anne; Stein, Dan J.; Dickie, Erin W.; Pomarol-Clotet, Edith; Fuentes-Claramonte, Paola; Jorge Canales-Rodrguez, Erick; Salvador, Raymond; Huang, Alexander J.; Roiz-Santia~nez, Roberto; Cong, Shan; Tomyshev, Alexander; Piras, Fabrizio; Vecchio, Daniela; Banaj, Nerisa; Ciullo, Valentina; Hong, Elliot; Busatto, Geraldo; Zanetti, Marcus V.; Serpa, Mauricio H.; Cervenka, Simon; Kelly, Sinead; Grotegerd, Dominik; Sacchet, Matthew D.; Veer, Ilya M.; Li, Meng; Wu, Mon-Ju; Irungu, Benson; Thompson, and Paul M.; the ENIGMA consortium, For. - (2017).

Machine learning for large-scale quality control of 3D shape models in neuroimaging

Fabrizio Piras;Daniela Vecchio;Valentina Ciullo;
2017

Abstract

As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 humanrated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.
2017
Machine learning in medical imaging
shape analysis, machine learning, quality control
02 Pubblicazione su volume::02a Capitolo o Articolo
Machine learning for large-scale quality control of 3D shape models in neuroimaging / Petrov, Dmitry; Gutman, Boris A.; (Julie) Yu, Shih-Hua; van Erp, Theo G. M.; Turner, Jessica A.; Schmaal, Lianne; Veltman, Dick; Wang, Lei; Alpert, Kathryn; Isaev, Dmitry; Zavaliangos-Petropulu, Artemis; Ching, Christopher R. K.; Calhoun, Vince; Glahn, David; Satterthwaite, Ted; Andreas Andreasen, Ole; Borgwardt, Stefan; Howells, Fleur; Groenewold, Nynke; Voineskos, Aristotle; Radua, Joaquim; Potkin, Steven G.; Crespo-Facorro, Benedicto; Tordesillas-Gutierrez, Diana; Shen, Li; Lebedeva, Irina; Spalletta, Gianfranco; Donohoe, Gary; Kochunov, Peter; Rosa, Pedro G. P.; James, Anthony; Dannlowski, Udo; Baune, Bernhard T.; Aleman, Andre; Gotlib, Ian H.; Walter, Henrik; Walter, Martin; Soares, Jair C.; Gur, Ruben C.; Trung Doan, N.; Agartz, Ingrid; Westlye, Lars T.; Harrisberger, Fabienne; Riecher-R ossler, Anita; Uhlmann, Anne; Stein, Dan J.; Dickie, Erin W.; Pomarol-Clotet, Edith; Fuentes-Claramonte, Paola; Jorge Canales-Rodrguez, Erick; Salvador, Raymond; Huang, Alexander J.; Roiz-Santia~nez, Roberto; Cong, Shan; Tomyshev, Alexander; Piras, Fabrizio; Vecchio, Daniela; Banaj, Nerisa; Ciullo, Valentina; Hong, Elliot; Busatto, Geraldo; Zanetti, Marcus V.; Serpa, Mauricio H.; Cervenka, Simon; Kelly, Sinead; Grotegerd, Dominik; Sacchet, Matthew D.; Veer, Ilya M.; Li, Meng; Wu, Mon-Ju; Irungu, Benson; Thompson, and Paul M.; the ENIGMA consortium, For. - (2017).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1213758
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact