Masonry structures subjected to seismic actions exhibit a complex nonlinear behaviour. To obtain a comprehensive representation of all the occurring nonlinear mechanisms, constitutive models including damage and plasticity are required and nonlinear dynamic analyses are considered the most reliable. Hence, models considering both degrading effects and hereditary nature of restoring forces are needed. Different approaches can be adopted, relying on microscopic, macroscopic, multi-scale and macroelement formulations. The latter are often adopted for real cases, mainly to reduce the computational burden of the analyses. The proposed macroelement accounts for typical flexural and shear in-plane failure mechanisms via two flexural hinges and a shear link, arranged in series with an elastic beam. The hysteretic behaviour is reproduced by a smooth model, in which the introduction of a damage function describes both strength and stiffness degradation effects. The model is used to perform comparisons with experimental results on masonry walls, with the aim of validating the numerical procedure and its capabilities to describe nonlinear masonry response.
Nonlinear analysis of masonry walls based on a damage-plastic formulation / Liberatore, Domenico; Addessi, Daniela; Sangirardi, Marialuigia. - (2019), pp. 1009-1017. [10.1007/978-3-319-99441-3_109].
Nonlinear analysis of masonry walls based on a damage-plastic formulation
Liberatore, Domenico;Addessi, Daniela;Sangirardi, Marialuigia
2019
Abstract
Masonry structures subjected to seismic actions exhibit a complex nonlinear behaviour. To obtain a comprehensive representation of all the occurring nonlinear mechanisms, constitutive models including damage and plasticity are required and nonlinear dynamic analyses are considered the most reliable. Hence, models considering both degrading effects and hereditary nature of restoring forces are needed. Different approaches can be adopted, relying on microscopic, macroscopic, multi-scale and macroelement formulations. The latter are often adopted for real cases, mainly to reduce the computational burden of the analyses. The proposed macroelement accounts for typical flexural and shear in-plane failure mechanisms via two flexural hinges and a shear link, arranged in series with an elastic beam. The hysteretic behaviour is reproduced by a smooth model, in which the introduction of a damage function describes both strength and stiffness degradation effects. The model is used to perform comparisons with experimental results on masonry walls, with the aim of validating the numerical procedure and its capabilities to describe nonlinear masonry response.File | Dimensione | Formato | |
---|---|---|---|
Liberatore_Nonlinear_2019.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
772.39 kB
Formato
Adobe PDF
|
772.39 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.