We discuss the average-field approximation for a trapped gas of non-interacting anyons in the quasi-bosonic regime. In the homogeneous case, i.e., for a confinement to a bounded region, we prove that the energy in the regime of large statistics parameter, i.e., for “less-bosonic” anyons, is independent of boundary conditions and of the shape of the domain. When a non-trivial trapping potential is present, we derive a local density approximation in terms of a Thomas-Fermi-like model. The results presented here mainly summarize [Anal. PDE 10 (2017), 1169-1200] with additional remarks and strengthening of some statements.

Local density approximation for almost-bosonic anyons / Correggi, M.; Lundholm, D.; Rougerie, Nicolas. - (2018), pp. 77-92. [10.1090/conm/717/14442].

Local density approximation for almost-bosonic anyons

Correggi, M.
;
ROUGERIE, NICOLAS
2018

Abstract

We discuss the average-field approximation for a trapped gas of non-interacting anyons in the quasi-bosonic regime. In the homogeneous case, i.e., for a confinement to a bounded region, we prove that the energy in the regime of large statistics parameter, i.e., for “less-bosonic” anyons, is independent of boundary conditions and of the shape of the domain. When a non-trivial trapping potential is present, we derive a local density approximation in terms of a Thomas-Fermi-like model. The results presented here mainly summarize [Anal. PDE 10 (2017), 1169-1200] with additional remarks and strengthening of some statements.
2018
Mathematical Problems in Quantum Physics
9781470436810
9781470449391
anyons; fractional statistics; average-field functional
02 Pubblicazione su volume::02a Capitolo o Articolo
Local density approximation for almost-bosonic anyons / Correggi, M.; Lundholm, D.; Rougerie, Nicolas. - (2018), pp. 77-92. [10.1090/conm/717/14442].
File allegati a questo prodotto
File Dimensione Formato  
Correggi_Local-density_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 264.44 kB
Formato Adobe PDF
264.44 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1196361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact