In many practical situations data may be characterized by non-linear structures. Classical (hard or fuzzy) algorithms, usually based on the Euclidean distance, implicitly lead to spherical shape clusters and, therefore, do not identify clusters properly. In this paper we deal with non-linear structures in clustering by means of the geodesic distance, able to capture and preserve the intrinsic geometry of the data. We introduce a new fuzzy relational clustering algorithm based on the geodesic distance. Furthermore, to improve its adequacy, a robust version is proposed in order to take into account the presence of outliers.

Robust fuzzy relational clustering of non-linear data / Ferraro, Maria Brigida; Giordani, Paolo. - (2019), pp. 87-90. [10.1007/978-3-319-97547-4_12].

Robust fuzzy relational clustering of non-linear data

Ferraro, Maria Brigida
Primo
;
Giordani, Paolo
Secondo
2019

Abstract

In many practical situations data may be characterized by non-linear structures. Classical (hard or fuzzy) algorithms, usually based on the Euclidean distance, implicitly lead to spherical shape clusters and, therefore, do not identify clusters properly. In this paper we deal with non-linear structures in clustering by means of the geodesic distance, able to capture and preserve the intrinsic geometry of the data. We introduce a new fuzzy relational clustering algorithm based on the geodesic distance. Furthermore, to improve its adequacy, a robust version is proposed in order to take into account the presence of outliers.
2019
Advances in Intelligent Systems and Computing
9783319975467
fuzzy clustering; robust clustering; non-linear data
02 Pubblicazione su volume::02a Capitolo o Articolo
Robust fuzzy relational clustering of non-linear data / Ferraro, Maria Brigida; Giordani, Paolo. - (2019), pp. 87-90. [10.1007/978-3-319-97547-4_12].
File allegati a questo prodotto
File Dimensione Formato  
Ferraro_Robust-fuzzy_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 715.27 kB
Formato Adobe PDF
715.27 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1188341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact