The role of local and global dynamics to assess a system robustness and actual safety in operating conditions is investigated, by also studying the effect of different local and global control techniques on the nonlinear behavior of a noncontact AFM. Firstly, the nonlinear dynamical behavior of a single-mode model of noncontact AFM is analyzed in terms of stability of the main periodic solutions, as well as attractors robustness and basins integrity. To the same AFM model, an external feedback control is inserted during its nonlinear continuum formulation, with the aim to keep the system response to an operationally suitable one. The dynamical analysis of the controlled system is developed to investigate and verify the effects of control into the system overall behavior, which could be unexpectedly influenced by the local nature of the control technique. A different control technique is finally applied to the AFM model, acting on global bifurcation events to obtain an enlargement of the systems safe region in parameters space. The analytical procedure, based on Melnikov method, is applied to the homoclinic bifurcation involving the system hilltop saddle, and its practical effects as regards possibly increasing the system overall robustness are numerically investigated by means of a dynamical integrity analysis. Then, a fully numerical procedure is implemented to possibly control global bifurcations involving generic saddles. The method proves to succeed in delaying the drop down of the erosion profile, thus increasing the overall robustness of the system during operating conditions.

Local versus global dynamics and control of an AFM model in a safety perspective / Settimi, V.; Rega, G.. - (2018), pp. 229-286. - CISM INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES. [10.1007/978-3-319-99710-0_5].

Local versus global dynamics and control of an AFM model in a safety perspective

Settimi V.
;
Rega G.
2018

Abstract

The role of local and global dynamics to assess a system robustness and actual safety in operating conditions is investigated, by also studying the effect of different local and global control techniques on the nonlinear behavior of a noncontact AFM. Firstly, the nonlinear dynamical behavior of a single-mode model of noncontact AFM is analyzed in terms of stability of the main periodic solutions, as well as attractors robustness and basins integrity. To the same AFM model, an external feedback control is inserted during its nonlinear continuum formulation, with the aim to keep the system response to an operationally suitable one. The dynamical analysis of the controlled system is developed to investigate and verify the effects of control into the system overall behavior, which could be unexpectedly influenced by the local nature of the control technique. A different control technique is finally applied to the AFM model, acting on global bifurcation events to obtain an enlargement of the systems safe region in parameters space. The analytical procedure, based on Melnikov method, is applied to the homoclinic bifurcation involving the system hilltop saddle, and its practical effects as regards possibly increasing the system overall robustness are numerically investigated by means of a dynamical integrity analysis. Then, a fully numerical procedure is implemented to possibly control global bifurcations involving generic saddles. The method proves to succeed in delaying the drop down of the erosion profile, thus increasing the overall robustness of the system during operating conditions.
2018
Global Nonlinear Dynamics for Engineering Design and System Safety
978-3-319-99709-4
978-3-319-99710-0
atomic force microscopy, global dynamics, external feedback control, invariant manifolds, basins of attraction, dynamical integrity
02 Pubblicazione su volume::02a Capitolo o Articolo
Local versus global dynamics and control of an AFM model in a safety perspective / Settimi, V.; Rega, G.. - (2018), pp. 229-286. - CISM INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES. [10.1007/978-3-319-99710-0_5].
File allegati a questo prodotto
File Dimensione Formato  
Settimi_Local_2018.pdf

solo gestori archivio

Note: https://link.springer.com/chapter/10.1007/978-3-319-99710-0_5
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1165533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact