The aim of this chapter is to give an overview of the recent advances related to sampling and recovery of signals defined over graphs. First, we illustrate the conditions for perfect recovery of bandlimited graph signals from samples collected over a selected set of vertices. Then, we describe some sampling design criteria proposed in the literature to mitigate the effect of noise and model mismatching when performing graph signal recovery. Finally, we illustrate algorithms and optimal sampling strategies for adaptive recovery and tracking of dynamic graph signals, where both sampling set and signal values are allowed to vary with time. Numerical simulations carried out over both synthetic and real data illustrate the potential advantages of graph signal processing methods for sampling, interpolation, and tracking of signals observed over irregular domains such as, e.g., technological or biological networks.

Sampling and recovery of graph signals / DI LORENZO, PAOLO; BARBAROSSA, Sergio; BANELLI, PAOLO. - (2018), pp. 261-282. [10.1016/B978-0-12-813677-5.00009-2].

Sampling and recovery of graph signals

Paolo Di Lorenzo;Sergio Barbarossa;Paolo Banelli
2018

Abstract

The aim of this chapter is to give an overview of the recent advances related to sampling and recovery of signals defined over graphs. First, we illustrate the conditions for perfect recovery of bandlimited graph signals from samples collected over a selected set of vertices. Then, we describe some sampling design criteria proposed in the literature to mitigate the effect of noise and model mismatching when performing graph signal recovery. Finally, we illustrate algorithms and optimal sampling strategies for adaptive recovery and tracking of dynamic graph signals, where both sampling set and signal values are allowed to vary with time. Numerical simulations carried out over both synthetic and real data illustrate the potential advantages of graph signal processing methods for sampling, interpolation, and tracking of signals observed over irregular domains such as, e.g., technological or biological networks.
9780128136775
File allegati a questo prodotto
File Dimensione Formato  
DiLorenzo_Sampling_post-print_2018.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 400.04 kB
Formato Adobe PDF
400.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1163181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact