The current fixed target (FT) experiments at CERN are a complementary approach to the Large Hadron Collider (LHC) and play a crucial role in the investigation of fundamental questions in particle physics. Within the scope of the LHC Injectors Upgrade (LIU), aiming to improve the LHC beam production, the injector complex will be significantly upgraded during the second Long Shutdown (LS2). All nonLHC beams are expected to benefit from these upgrades. In this paper, we focus on the studies of the transverse instability in the Proton Synchrotron (PS), currently limiting the intensity of Time-Of-Flight (ToF) type beams, as well as the prediction of the impact of envisaged hardware modifications. A first discussion on the effect of space charge on the observed instability is also being presented.
High intensity effects of fixed target beams in the CERN injector complex / Koukovini-Platia, E.; Bartosik, H.; Migliorati, M.; Rumolo, G.. - (2018), pp. 237-242. [10.18429/JACoW-HB2018-WEA2WA01].
High intensity effects of fixed target beams in the CERN injector complex
M. Migliorati;
2018
Abstract
The current fixed target (FT) experiments at CERN are a complementary approach to the Large Hadron Collider (LHC) and play a crucial role in the investigation of fundamental questions in particle physics. Within the scope of the LHC Injectors Upgrade (LIU), aiming to improve the LHC beam production, the injector complex will be significantly upgraded during the second Long Shutdown (LS2). All nonLHC beams are expected to benefit from these upgrades. In this paper, we focus on the studies of the transverse instability in the Proton Synchrotron (PS), currently limiting the intensity of Time-Of-Flight (ToF) type beams, as well as the prediction of the impact of envisaged hardware modifications. A first discussion on the effect of space charge on the observed instability is also being presented.File | Dimensione | Formato | |
---|---|---|---|
wea2wa01.pdf
accesso aperto
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.