In this chapter we summarize the main points of our overview and draw our conclusions. We discuss our interpretations about the reasons behind the different results and performance achieved by the Recurrent Neural Network architectures analyzed. We conclude by hypothesizing possible guidlines for selecting suitable models depending on the specific task at hand.
Conclusions / Bianchi, Filippo Maria; Maiorino, Enrico; Kampffmeyer, Michael C.; Rizzi, Antonello; Jenssen, Robert. - (2017), pp. 71-72. - SPRINGERBRIEFS IN COMPUTER SCIENCE. [10.1007/978-3-319-70338-1_8].
Conclusions
Bianchi, Filippo Maria;Maiorino, Enrico;Rizzi, Antonello;
2017
Abstract
In this chapter we summarize the main points of our overview and draw our conclusions. We discuss our interpretations about the reasons behind the different results and performance achieved by the Recurrent Neural Network architectures analyzed. We conclude by hypothesizing possible guidlines for selecting suitable models depending on the specific task at hand.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Bianchi_Conclusions_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
94.86 kB
Formato
Adobe PDF
|
94.86 kB | Adobe PDF | Contatta l'autore |
Bianchi_Recurrent_Frontespizio-colophon-indice_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.