In this section, we compare the prediction performance achieved by the recurrent neural network architectures presented in the previous sections on both the synthetic tasks and the real-world datasets. For each architecture, we report the optimal configuration of its hyperparameters for the task at hand, and the best learning strategy adopted for training the model weights. We perform several independent evaluation of the prediction results due to the stochastic initialization of the internal model weights. The accuracy of the forecast is evaluated in terms of normalized mean squared error and the results are reported both as numerical value and graphical depictions of the predicted time series.

Experiments / Bianchi, Filippo Maria; Maiorino, Enrico; Kampffmeyer, Michael C.; Rizzi, Antonello; Jenssen, Robert. - STAMPA. - (2017), pp. 57-69. - SPRINGERBRIEFS IN COMPUTER SCIENCE. [10.1007/978-3-319-70338-1_7].

Experiments

Bianchi, Filippo Maria;Maiorino, Enrico;Rizzi, Antonello;
2017

Abstract

In this section, we compare the prediction performance achieved by the recurrent neural network architectures presented in the previous sections on both the synthetic tasks and the real-world datasets. For each architecture, we report the optimal configuration of its hyperparameters for the task at hand, and the best learning strategy adopted for training the model weights. We perform several independent evaluation of the prediction results due to the stochastic initialization of the internal model weights. The accuracy of the forecast is evaluated in terms of normalized mean squared error and the results are reported both as numerical value and graphical depictions of the predicted time series.
2017
Recurrent Neural Networks for Short-Term Load Forecasting. An Overview and Comparative Analysis
978-3-319-70337-4
978-3-319-70338-1
Forecast models comparative analysis; Performance analysis; Prediction accuracy evaluation; Computer Science (all)
02 Pubblicazione su volume::02a Capitolo o Articolo
Experiments / Bianchi, Filippo Maria; Maiorino, Enrico; Kampffmeyer, Michael C.; Rizzi, Antonello; Jenssen, Robert. - STAMPA. - (2017), pp. 57-69. - SPRINGERBRIEFS IN COMPUTER SCIENCE. [10.1007/978-3-319-70338-1_7].
File allegati a questo prodotto
File Dimensione Formato  
Bianchi_Experiments_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 973.6 kB
Formato Adobe PDF
973.6 kB Adobe PDF   Contatta l'autore
Bianchi_Recurrent_Frontespizio-colophon-indice_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1119403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact