In this chapter, we describe three different synthetic datasets that we considered to evaluate the performance of the reviewed recurrent neural network architectures in a controlled environment. The generative models of the synthetic time series are the Mackey–Glass system, NARMA, and multiple superimposed oscillators.Those are benchmark tasks commonly considered in the literature to evaluate the performance of a predictive model. The three forecasting exercises that we study have varying levels of difficulty, given by the nature of the signal and the complexity of the task to be solved by the RNN.

Synthetic time series / Bianchi, Filippo Maria; Maiorino, Enrico; Kampffmeyer, Michael C.; Rizzi, Antonello; Jenssen, Robert. - STAMPA. - (2017), pp. 41-43. - SPRINGERBRIEFS IN COMPUTER SCIENCE. [10.1007/978-3-319-70338-1_5].

Synthetic time series

Bianchi, Filippo Maria;Maiorino, Enrico;Rizzi, Antonello;
2017

Abstract

In this chapter, we describe three different synthetic datasets that we considered to evaluate the performance of the reviewed recurrent neural network architectures in a controlled environment. The generative models of the synthetic time series are the Mackey–Glass system, NARMA, and multiple superimposed oscillators.Those are benchmark tasks commonly considered in the literature to evaluate the performance of a predictive model. The three forecasting exercises that we study have varying levels of difficulty, given by the nature of the signal and the complexity of the task to be solved by the RNN.
2017
Recurrent Neural Networks for Short-Term Load Forecasting - An Overview and Comparative Analysis
978-3-319-70337-4
978-3-319-70338-1
Benchmark prediction tasks; Mackey–Glass system; Multiple superimposed oscillators; Nonlinear auto-regressive moving average task; Synthetic time series; Computer Science (all)
02 Pubblicazione su volume::02a Capitolo o Articolo
Synthetic time series / Bianchi, Filippo Maria; Maiorino, Enrico; Kampffmeyer, Michael C.; Rizzi, Antonello; Jenssen, Robert. - STAMPA. - (2017), pp. 41-43. - SPRINGERBRIEFS IN COMPUTER SCIENCE. [10.1007/978-3-319-70338-1_5].
File allegati a questo prodotto
File Dimensione Formato  
Bianchi_Syntethic_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 104.49 kB
Formato Adobe PDF
104.49 kB Adobe PDF   Contatta l'autore
Bianchi_Recurrent_Frontespizio-colophon-indice_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1119374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact