Cellular Automata are discrete--time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata, are discrete time Markov chains on lattice with finite single--cell states whose distinguishing feature is the \textit{parallel} character of the updating rule. We review the some of the results obtained about the metastable behavior of Probabilistic Cellular Automata and we try to point out difficulties and peculiarities with respect to standard Statistical Mechanics Lattice models.

Basic Ideas to Approach Metastability in Probabilistic Cellular Automata / Cirillo, Emilio N. M.; Nardi, Francesca R.; Spitoni, Cristian. - STAMPA. - (2018), pp. 37-51. [10.1007/978-3-319-65558-1].

Basic Ideas to Approach Metastability in Probabilistic Cellular Automata

Emilio N. M. Cirillo;
2018

Abstract

Cellular Automata are discrete--time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata, are discrete time Markov chains on lattice with finite single--cell states whose distinguishing feature is the \textit{parallel} character of the updating rule. We review the some of the results obtained about the metastable behavior of Probabilistic Cellular Automata and we try to point out difficulties and peculiarities with respect to standard Statistical Mechanics Lattice models.
2018
Probabilistic Cellular Automata - Theory, Applications and Future Perspectives
978-3-319-65556-7
978-3-319-65558-1
Probabilistic Cellular Automata; Metastability
02 Pubblicazione su volume::02a Capitolo o Articolo
Basic Ideas to Approach Metastability in Probabilistic Cellular Automata / Cirillo, Emilio N. M.; Nardi, Francesca R.; Spitoni, Cristian. - STAMPA. - (2018), pp. 37-51. [10.1007/978-3-319-65558-1].
File allegati a questo prodotto
File Dimensione Formato  
cns-pca_rev.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 176.81 kB
Formato Adobe PDF
176.81 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1113311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact