The present chapter concerns rigorous homogenization of a Hencky-type discrete beam model, which is useful for the numerical study of complex fibrous systems as pantographic sheets as well as woven fabrics. -convergence of the discrete model towards the inextensible Euler’s beam model is proven and the result is established for placements in Rd in large deformation regime.

Convergence of Hencky-type discrete beam model to euler inextensible elastica in large deformation: Rigorous proof / Alibert, Jean-Jacques; Della Corte, Alessandro; Seppecher, Pierre. - STAMPA. - 69(2017), pp. 1-12. - ADVANCED STRUCTURED MATERIALS. [10.1007/978-981-10-3764-1_1].

Convergence of Hencky-type discrete beam model to euler inextensible elastica in large deformation: Rigorous proof

Della Corte, Alessandro;
2017

Abstract

The present chapter concerns rigorous homogenization of a Hencky-type discrete beam model, which is useful for the numerical study of complex fibrous systems as pantographic sheets as well as woven fabrics. -convergence of the discrete model towards the inextensible Euler’s beam model is proven and the result is established for placements in Rd in large deformation regime.
2017
Mathematical Modelling in Solid Mechanics
9789811037634
9789811037641
materials science (all)
02 Pubblicazione su volume::02a Capitolo o Articolo
Convergence of Hencky-type discrete beam model to euler inextensible elastica in large deformation: Rigorous proof / Alibert, Jean-Jacques; Della Corte, Alessandro; Seppecher, Pierre. - STAMPA. - 69(2017), pp. 1-12. - ADVANCED STRUCTURED MATERIALS. [10.1007/978-981-10-3764-1_1].
File allegati a questo prodotto
File Dimensione Formato  
Alibert_preprint_convergence-of-hencky_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 296.89 kB
Formato Adobe PDF
296.89 kB Adobe PDF
Alibert_convergence-of-hencky_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 163.15 kB
Formato Adobe PDF
163.15 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1095182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact