Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

Systems biology-driven hypotheses tested in vivo: the need to advancing molecular imaging tools / Verma, Garima; Garima;, Palombo; Alessandro;, Grigioni; Mauro; Morena La Monaca; Giuseppe, D’Avenio. - STAMPA. - 1702(2018), pp. 337-359. - METHODS IN MOLECULAR BIOLOGY. [10.1007/978-1-4939-7456-6_17].

Systems biology-driven hypotheses tested in vivo: the need to advancing molecular imaging tools

Verma;
2018

Abstract

Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.
2018
System biology
978-1-4939-7455-9
978-1-4939-7456-6
molecular imaging; software; system biology; omics; modeling; laboratory data management
02 Pubblicazione su volume::02a Capitolo o Articolo
Systems biology-driven hypotheses tested in vivo: the need to advancing molecular imaging tools / Verma, Garima; Garima;, Palombo; Alessandro;, Grigioni; Mauro; Morena La Monaca; Giuseppe, D’Avenio. - STAMPA. - 1702(2018), pp. 337-359. - METHODS IN MOLECULAR BIOLOGY. [10.1007/978-1-4939-7456-6_17].
File allegati a questo prodotto
File Dimensione Formato  
Verma_Systems_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Contatta l'autore
Verma_Frontespizio_Systems_2018.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 97.6 kB
Formato Adobe PDF
97.6 kB Adobe PDF   Contatta l'autore
Verma_Indice_Systems_2018.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 329.65 kB
Formato Adobe PDF
329.65 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1033016
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact