In this survey, we review recent results concerning the canonical dispersive flow e^(itH) led by a Schrödinger Hamiltonian H. We study, in particular, how the time decay of space Lp-norms depends on the frequency localization of the initial datum with respect to the some suitable spherical expansion. A quite complete description of the phenomenon is given in terms of the eigenvalues and eigenfunctions of the restriction of H to the unit sphere, and a comparison with some uncertainty inequality is presented. © Springer International Publishing AG 2017.

Spherical Schrödinger hamiltonians: spectral analysis and time decay / Fanelli, Luca. - STAMPA. - (2017), pp. 135-151. [10.1007/978-3-319-58904-6_8].

Spherical Schrödinger hamiltonians: spectral analysis and time decay

FANELLI, Luca
2017

Abstract

In this survey, we review recent results concerning the canonical dispersive flow e^(itH) led by a Schrödinger Hamiltonian H. We study, in particular, how the time decay of space Lp-norms depends on the frequency localization of the initial datum with respect to the some suitable spherical expansion. A quite complete description of the phenomenon is given in terms of the eigenvalues and eigenfunctions of the restriction of H to the unit sphere, and a comparison with some uncertainty inequality is presented. © Springer International Publishing AG 2017.
2017
Advances in Quantum Mechanics
978-3-319-58903-9
978-3-319-58904-6
dispersive estimates; electromagnetic potentials; Schrödinger equation; mathematics (all)
02 Pubblicazione su volume::02a Capitolo o Articolo
Spherical Schrödinger hamiltonians: spectral analysis and time decay / Fanelli, Luca. - STAMPA. - (2017), pp. 135-151. [10.1007/978-3-319-58904-6_8].
File allegati a questo prodotto
File Dimensione Formato  
Fanelli_Spherical-Schrödinger_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 212.56 kB
Formato Adobe PDF
212.56 kB Adobe PDF   Contatta l'autore
Fanelli_frontespizio_Spherical-Schrödinger_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 49.13 kB
Formato Adobe PDF
49.13 kB Adobe PDF   Contatta l'autore
Fanelli_indice_Spherical-Schrödinger_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 101.29 kB
Formato Adobe PDF
101.29 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1001357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact