In this survey, we review recent results concerning the canonical dispersive flow e^(itH) led by a Schrödinger Hamiltonian H. We study, in particular, how the time decay of space Lp-norms depends on the frequency localization of the initial datum with respect to the some suitable spherical expansion. A quite complete description of the phenomenon is given in terms of the eigenvalues and eigenfunctions of the restriction of H to the unit sphere, and a comparison with some uncertainty inequality is presented. © Springer International Publishing AG 2017.
Spherical Schrödinger hamiltonians: spectral analysis and time decay / Fanelli, Luca. - STAMPA. - (2017), pp. 135-151. [10.1007/978-3-319-58904-6_8].
Spherical Schrödinger hamiltonians: spectral analysis and time decay
FANELLI, Luca
2017
Abstract
In this survey, we review recent results concerning the canonical dispersive flow e^(itH) led by a Schrödinger Hamiltonian H. We study, in particular, how the time decay of space Lp-norms depends on the frequency localization of the initial datum with respect to the some suitable spherical expansion. A quite complete description of the phenomenon is given in terms of the eigenvalues and eigenfunctions of the restriction of H to the unit sphere, and a comparison with some uncertainty inequality is presented. © Springer International Publishing AG 2017.File | Dimensione | Formato | |
---|---|---|---|
Fanelli_Spherical-Schrödinger_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
212.56 kB
Formato
Adobe PDF
|
212.56 kB | Adobe PDF | Contatta l'autore |
Fanelli_frontespizio_Spherical-Schrödinger_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
49.13 kB
Formato
Adobe PDF
|
49.13 kB | Adobe PDF | Contatta l'autore |
Fanelli_indice_Spherical-Schrödinger_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
101.29 kB
Formato
Adobe PDF
|
101.29 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.