Whenever communication takes place to fulfill a goal, an effective way to encode the source data to be transmitted is to use an encoding rule that allows the receiver to meet the requirements of the goal. A formal way to identify the relevant information with respect to a goal can be obtained exploiting the information bottleneck (IB) principle. In this paper, we propose a goal-oriented communication system, based on the combination of IB and stochastic optimization. The IB principle is used to design the encoder in order to find an optimal balance between representation complexity and relevance of the encoded data with respect to the goal. Stochastic optimization is then used to adapt the parameters of the IB to find an efficient resource allocation of communication and computation resources. Our goal is to minimize the average energy consumption under constraints on average service delay and accuracy of the learning task applied to the received data in a dynamic scenario. Numerical results assess the performance of the proposed strategy in two cases: regression from Gaussian random variables, where we can exploit closed-form solutions, and image classification using deep neural networks, with adaptive network splitting between transmit and receive sides.

GOAL-ORIENTED COMMUNICATION FOR EDGE LEARNING BASED ON THE INFORMATION BOTTLENECK / Pezone, F; Barbarossa, S; Di Lorenzo, P. - (2022), pp. 8832-8836. [10.1109/ICASSP43922.2022.9746468]

GOAL-ORIENTED COMMUNICATION FOR EDGE LEARNING BASED ON THE INFORMATION BOTTLENECK

Pezone, F;Barbarossa, S;
2022

Abstract

Whenever communication takes place to fulfill a goal, an effective way to encode the source data to be transmitted is to use an encoding rule that allows the receiver to meet the requirements of the goal. A formal way to identify the relevant information with respect to a goal can be obtained exploiting the information bottleneck (IB) principle. In this paper, we propose a goal-oriented communication system, based on the combination of IB and stochastic optimization. The IB principle is used to design the encoder in order to find an optimal balance between representation complexity and relevance of the encoded data with respect to the goal. Stochastic optimization is then used to adapt the parameters of the IB to find an efficient resource allocation of communication and computation resources. Our goal is to minimize the average energy consumption under constraints on average service delay and accuracy of the learning task applied to the received data in a dynamic scenario. Numerical results assess the performance of the proposed strategy in two cases: regression from Gaussian random variables, where we can exploit closed-form solutions, and image classification using deep neural networks, with adaptive network splitting between transmit and receive sides.
2022
Information bottleneck; wireless edge learning; stochastic optimization; resource allocation
01 Pubblicazione su rivista::01a Articolo in rivista
GOAL-ORIENTED COMMUNICATION FOR EDGE LEARNING BASED ON THE INFORMATION BOTTLENECK / Pezone, F; Barbarossa, S; Di Lorenzo, P. - (2022), pp. 8832-8836. [10.1109/ICASSP43922.2022.9746468]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1671332
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 9
social impact