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The Role of Market Speculation in Rising Oil

Prices

Gabriele D’Amore∗

May 8, 2017

Abstract

The large oil price fluctuations occurred from 2003 to 2008 has raised
many questions about their causes. Many empirical studies have at-
tempted to understand how oil price fluctuations are driven by changes in
both market fundamentals and speculative pressures. In this regard, some
problems arise such as: the use of unreliable data like the global level of
inventories or the specification of a vast number of arbitrary restrictions
for the models. In this study I try to isolate, coherently with the view of
Knittel and Pindyck(2016) [34] and inspired by Kilian’s works, the specu-
lative effect on the short-term spot price fluctuations determined by struc-
tural forward-looking behavioural shocks produced in the futures market.
Exploiting a dataset used in Kilian and Murphy (2012)[31], CFTC data
(period 1999M1-2008M6) and taking advantage of the standard theory of
storage we will be able to verify, with a Blanchard-Quah structural ap-
proach, that the impact of these shocks is remarkable but not the preva-
lent one in magnitude. Instead, it would seem that speculative inventory
holdings may have played a much more important role.

Keywords: Oil price, Financialization, Short Hedging, Open Interest, Stan-
dard Theory of Storage, SVAR.
JEL-Classification: C2 C32 Q40 Q43.

1 Introduction

The price of oil is showing strong fluctuations since 2003 when a sudden surge
in oil prices, apparently inexplicable, has led the price of WTI at its historical
peak in July 2008 at 145.31 dollars per barrel before falling in December of the
same year at 30.28 dollars per barrel. The same type of behaviour is observable
even later causing a drop of 75% in crude oil prices from June 2014 to January
2016.
The study of the hidden economic reasons determining these fluctuations is a
major objective of the international policy makers. (See for example HM Gov-
ernment (2010) [21]; EU Commission (2008) [13]; Lieberman, 2008 [38]). More

∗Sapienza University of Rome. Mail to: gabriele.damore@uniroma1.it. Corresponding
author at: Department of Economics and Social Sciences, Piazzale AldoMoro, 5 - 00185
Rome(IT).
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generally, the fluctuations in commodity prices, pose serious issues to the na-
tions.
Usually, countries are affected by two types of opposing effects on the purchasing
power: effects for the exporting countries, which suffer from the falling prices,
causing the drop of the national gross domestic product; effects for the importing
countries, which suffer from the generated inflation, to a greater extent based
on the degree of poverty of the involved nation. However, the high complexity
of the international price formation mechanism and the large number of actors
involved, make the study of these fluctuations a difficult task.
Numerous studies have attempted to pursue this objective. Very often the
literature offers econometric exploratory models, sometimes supported by well-
defined economic theory. (see Alquist et al., (2011) [1]; Baumeister et al., (2010)
[6]; Bencivenga et al., (2012) [7]; Juvenal and Petrella, (2014)[27]; Kilian, (2006)
[29]; Kilian and Murphy (2012)[31](2014)[32]; Lippi and Nobili, (2012) [39];
D’Ecclesia et al.(2014)) [15].
These studies are focused on the impact on the price determined by some fun-
damental drivers.
An interesting line of research is based on the hypothesis that the observed un-
usual price dynamic from 2003 is due to the financialization of crude oil market.
In fact, from 2003 the dynamic evolution of the price seems quite different com-
pared to the past.
Curiously during the same period, money managers were found to be particu-
larly active on the commodity exchange using crude oil as any other asset class
(Turner et al., 2011 [48]). Over ten years, the Global Asset Under Managment
(AUM) passed from 10 million to 400 million dollars, since 2001, with half of the
contracts managed using short dates or nearby futures contracts representing
around 50% in open interest.(D’Ecclesia et al.(2014)[15])
An important aspect studied in the literature is the measure of the effect of
speculation on the spot price of crude oil.
Generally speaking, three factors need to be accurately studied: 1) the Supply,
2) the Fundamental Demand 3) The Speculative Demand. The first of these
factors can be easily analysed, as there are available observable data, while for
both the second and the third factor, there is no single, universally acceptable
measure.
Notice that fundamental demand is intrinsically linked to the economic cycle,
while the speculative demand, is generated by a plurality of actors with un-
known targets which make it the most difficult factor to analyse. For instance,
a speculative behaviour can be observed both in producers and refineries com-
panies, that accumulate reserves when the selling price is lower than expected
and vice versa, the remaining part is generated by professional speculators who
trade futures contracts.
In my opinion, to understand the phenomenon, it is necessary to analyse the
behaviour of different players, which operate according to different preferences.
I believe that different long-term goals expressed by the various agents involved
in the market lead to completely different short-term effects on price.
Following the classification provided by the Commodities Future Trading Com-
mission (CFTC), we will distinguish two categories of traders: 1)”commercial”
and 2) ”non-commercial”. Thanks to this classification we will study and isolate
the impact of speculation on short-term dynamics of the crude oil price between
1999 and 2008, mainly inspired by Kilian’s works and studies on speculative
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activity conducted by Knittel and Pindyck(2016) [34]. I will present three ma-
jor results: 1) differently to previous literature, we will be able to empirically
measure the impact that diversifiable risk and upward expectations, of the non-
commercials (speculators), have on the real spot price fluctuations; 2) we will
show that the non-commercial upward expectations impact significantly on the
short-term deviations in oil prices, furthermore; 3) by jointly studying the spot
market and the futures market we will be able to implicitly distinguish the effect
of forward-looking operations on the spot market.
In the next section, it has reviewed the literature on the impact of speculation
on commodity prices. The literature often disagrees about the actual role of
speculation in affecting oil prices.

2 Literary Review

In recent years about four explanations were provided by the literature to clarify
the reasons for the sudden increase in the crude oil price of the first decade of
the new millennium:
1) The first hypothesis concerns the finiteness of crude oil that causes a bound-
ary limit to the increase of the production capacity (”peak oil hypothesis”);
2) The second hypothesis is based on the growing demand from emerging coun-
tries such as China and India (”demand growth hypothesis”);
3) The third hypothesis considers speculators as those responsible for an altered
dynamic of prices due to the strengthening of a forward-looking demand (”spec-
ulation hypothesis”);
4) the fourth hypothesis claims that the growth of the market liquidity deter-
mines the increase in the crude oil demand(”excess liquidity hypothesis”).
Singleton (2011) [44], and Hamilton and Wu (2011)[24] are in favor of the specu-
lation hypothesis. Hamilton (2009) [23] provided an overview of possible causes
about the changes in oil prices and concluded that speculation played a role
in the increase in prices in the summer of 2008. Smith (2009) do not find
evidence that the speculation has raised prices between 2004 and 2008. Kauf-
mann(2011)[28] is one of the few researchers favourable to the peak hypothesis.
Kilian (2006) [29], Kilian and Murphy (2010))[31], Kilian and Hicks (2012)[30],
Krugman (2008) [37] and Hamilton (2009)[22] [23], Dees et al.(2007,2008)[16]
[17] find strong evidence that prices are determined by the growth of demand
against a stable supply. Some of the most important theoretical and empirical
works are B Fattouh, L Kilian, L Mahadeva (2012)[18] and Kilian (2006)[29],
Kilian and Murphy (2012)[31], and Baumeister and Kilian (2012)[5], Alquist
and Kilian (2010)[1], Hamilton (2009)[23], Smith (2009)[45], Knittel e Pindyck
(2016)[34]. Many of these works generalise the crude oil market model proposed
by Kilian (2006) [29] to examine the role of speculation and forward-looking be-
haviour with a focus on its role in spot and futures prices. Christopher R.
Knittel and Robert S. Pindyck (2016) [34]identify two channels whereby specu-
lators may influence the spot price of any storable commodity: 1) Speculation
via the Futures Market. 2) Speculative Inventory Holdings.
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3 Modelling the real price of oil

3.1 The structural approach in literature

The literature of both empirical and theoretical studies has often used oil prices
to evaluate the variation of economic aggregates, considering such prices as ex-
ogenously given. However, it is still not totally clear what are the directions
of dependency among economic aggregates and crude oil. Kilan (2006)[29] ad-
dressed this problem proposing a structural way to analyse crude oil prices inside
of a system of endogenous variables. Through a simple but powerful model, he
was able to study the linkage between oil price fluctuations and other funda-
mental variables by simply extracting the underlying structural shocks of the
system.
He showed that the fluctuations of the global spot price of crude oil were due to
the nature of underlying shocks and that forward-looking demand shock is the
dominant factor. This finding has been considered sufficient to explain how the
global economy was able to avoid recession during a period of high oil prices.
The fundamental assumptions of the Kilian’s base model are: 1) zero short run
price elasticity of supply of crude oil; 2) the introduction of a new measure
of global real economic activity based on the global index of dry cargo single
voyage freight rates maturate at a monthly frequency. This last monthly mea-
sure was introduced on the assumption that the world economic business cycle
reverberates its fluctuations in this measure, being them historically positively
correlated.(see, e.g., Isserlis 1938[26], Tinbergen, 1959[47], Stopford 1997[46]
Klovand 2004[33]). The advantage of using this measure is it does not require
exchange-rate based weights to be calculated because implicitly it already in-
corporates shifting country weights. Moreover, it automatically aggregates real
economic activity in all countries (including, e.g., China, India). 3) Kilian in-
terpreted any change in the spot price, not determined by structural shocks
of supply and demand, as due to the expectations of the agents operating in
the market (forward-looking view)(e.g.. New discoveries such as new off-shore
oil fields, an expected global financial crisis or the uncertainty about future oil
supply shortfalls, anticipation of a War,...).
These variations, not explained by fundamentals, are interpretable, in some
sense, as the effect of the speculative behaviour of rational players.
This initial model has been continuously improved over time. The improve-
ments mainly concern: 1) the introduction of new variables in the model; 2)
the estimation of the VAR model imposing exclusion restrictions on the impact
multiplier matrix ( following Faust (1998)[19], Canova and De Nicolò (2002)[10],
Uhlig (2005)[49]); 3) bounds on the magnitude of the short-run oil supply elas-
ticities and the sign of the impact response (Kilian and Murphy (2012)[31]).
They demonstrated that if only the sign restrictions are used, some elasticities
become unreasonably large.
The increasing of crude oil market size and the contemporary abnormal be-
haviour of prices have led many researchers to investigate the connection be-
tween the spot price of oil and speculation. Speculation can involve both
the purchase or sale of crude oil contracts for physical storage, which deter-
mines the accumulation of inventories and transactions of futures contracts.
(See Büyükşahin and Harris (2011)[9]). Christopher R. Knittel and Robert S.
Pindyck (2016) [34] have identified two channels whereby speculators can influ-
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ence the spot price of any storable commodity: 1) speculation via the futures
market; 2) speculative inventory holdings.
Since a considerable part of the speculative operations occurs on futures mar-
kets, it would be essential to clarify how futures prices can affect spot prices.
Coherently with economic theory (see Giannone and Reichlin (2006)[20]), oil
futures spread should not have predictive power.
Fattouh, Kilian and Mahadeva (2012)[18], argue that there is little evidence to
support speculation in pushing the spot price of oil after 2003 and they support
the thesis that spot and futures prices reflect common economic fundamentals.

3.2 The proposed approach

The approach I propose builds on the first family of structural models proposed
by Kilian (2006) [29], for the study of the world market of crude oil. I expand
the original system of endogenous variables:

• sdett the detrended world’s crude oil production;

• gdett a detrended index of real economic activity representing the global
business cycle;

• pdett the index of the detrended deflated crude oil prices calculated on the
base of U.S. refiners’ acquisition cost;

representing the spot market of crude oil, adding some key variables to the
system. In order to build an empirical model that can extract the impact that
the speculator’s upward expectation have had on oil spot price fluctuations, we
need the availability of: 1) data broken down by type of traders (hedgers or
speculators); 2) one or more proxies of speculators upward expectations, being
not possible to directly observe them.
To this end, I propose to include in the model the following additional variables
observable in the futures market:

• M OIhedgt the percentage change in futures open interest for short positions
held by commercial operators (hedgers).

• M OIspect the percentage change in futures open interest for long positions
held by non-commercial operators (speculators).

There are many reasons for this choice:

a. hedgers and speculators are two types of traders that usually are each
other’s counterpart (short hedging operations). This affects the entry or
exit from the market of both and it induces endogeneity. Therefore, for
the purpose of estimation of structural shocks, it is preferable to include
the open interest of both traders in our system of endogenous variables.

b. We decide to draw disaggregated open interest data from futures market
because they are naturally connected to the expectations of future spot
prices. In fact, the futures market is widely used by operators to manage
market risk on spot price or to speculate from their upward or downward
expectations of the spot price.

5



Figure 1: Futures open interest for short positions held by commercial operators
(hedgers)

c. Disaggregated futures open interest, by type of transaction (long and
short) and traders (hedgers and speculator), helps us to separately study
the expectations characterising hedgers and speculators in the futures mar-
ket. In fact, the open interest indicates the flow of money into futures
market, for both long and short selling operations, or in simple terms,
how the futures market is, in a particular moment, relevant to the trading
activities of a multitude of operators:

the hedgers sell futures to protect a portfolio of activities when they
have a rational expectation of a decline in the spot price. We reasonably
guess that the higher the market risk, (or the greater the risk aversion )
and the higher the open interest on short operations of those operators.
In this sense, the futures open interest of the hedger’s short operations
contains information on rational expectations, the hedgers’ risk aversion
and the market risk. (See figure 1)

the speculators buy futures to speculate on price when there is an
upward expectation. We reasonably expect that the higher the risk of
the market, or the higher the speculators risk attitude and the higher the
open interest on long operations. In this sense, the futures open interest of
speculator’s long operations contains information on speculators upward
expectations, the speculators’ attitude to risk (which can be analysed in
terms of risk premium according to Keynesian theory of backwardation)
and the market risk. (See figure 2)

the strategy I propose, to extrapolate the effect of speculators upward expecta-
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Figure 2: Futures open interest for long positions held by non-commercial op-
erators (speculators)

tion on the spot price, requires to disentangle the expectations in: 1) the mar-
ket’s rational expectation and 2) the speculative expectation of non-commercials
(speculators) making use of the concept of:

• Market risk premium πMkt
t T with the theory of normal backwardation;

Keynes (1930) theory of normal backwardation argues that if producers
of a commodity (the so-called commercial traders) want to hedge the
market risk, they may want to do it by selling futures contracts. The
counterpart (arbitrageurs) may be compensated for assuming that risk
in the form of an appropriate futures price. This kind of compensation
is called market risk premium.

If we assume:

• the theory of normal backwardation supposing to be valid for the long
run;

• no effect on spot price are due to speculative expectations in the long run;

the consequences are the following:
speculators have the incentive to take and hold the long position, in the futures
market, to get the risk premium they expect, that does not necessarily coincide
with the market risk premium. To put it another way, they speculate on the
expected spot price. However in the long run market risk premium cannot be
affected by speculators expectations, as it is assumed that in the long run spot
price is not affected by speculative expectations.(For further details read section
4.1).
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hedgers the higher will be the market risk premium the higher will be the in-
centive to cover the market risk taking and holding a short position and vice
versa.
Notice that,

• in this context of long-run expectations the market risk premium is only
affected by non-diversifiable risk.

In this regard, Hamilton (2014) [24] argues that: ”empirical support for this view
has come from Carter, Rausser, and Schmitz (1983)[11], Chang (1985) [12], and
De Roon, Nijman, and Veld (2000) [14], who interpreted the compensation as
arising from the non-diversifiable component of commodity price risk.”
Other differences that characterise the proposed approach compared to that of
Kilian’s are: 1)we impose restrictions on the long-term impacts matrix, instead
of short-term impacts matrix. This will allow us to take advantage of the popular
theory of storage; 2) According to Baumeister, Christiane, and Gert Peersman
(2009) [6]we assume that the increase of hedging possibilities, provided by the
growth of crude oil market size, is reducing the long-term price elasticity of
supply.
Reasoned arguments in support of the methodology are provided below.

3.2.1 The Standard Theory of Storage

According to the standard theory of storage and the non-arbitrage principle, it
can be shown that there is a long-run relationship between the price of crude
oil and a number of variables, including the price of a futures contract (see (5)).
This condition allows us to state that any speculation on the futures markets
should immediately influence the spot price of crude oil in the long run.
Kilian (2006) [29] implicitly consider this relation for avoiding to include the
price of futures contracts inside the model. However, it must be stressed that
this connection is valid only in the long term being based on the non-arbitrage
principle. Consequently, we couldn’t be sure that the price of futures contracts
likewise affect the short-term spot price.
From this observation, we believe that exploiting this relation in the long run
framework is somehow fundamental to study the effect of speculation in the
futures markets on the crude oil spot price.

3.2.2 Data

Oil prices are not the only instrument useful for assessing the speculation in the
futures markets. A much cleaner signal of the speculative activity is provided
by the CFTC, with data and periodic reports covering the positions of broad
categories of traders, such as ”commercial” and ”non-commercial” traders.

3.2.3 The Elasticity Hypotheses

Kilian and Murphy(2014)[32] proposed to replace the so far adopted Kilian’s
hypothesis of zero short-run oil supply elasticity, considered ”a good approxi-
mation but unlikely to be literally correct”, with the imposition of a set of: 1)

8



restrictions on the sign of the contemporaneous impact matrix; 2) bonds on the
oil supply elasticity.
We do not believe that this approach can be convincing for two reasons:
1)(the arbitrary nature of the constraints) the introduction of this methodology
leads to a greater number of boundary constraints we cannot always test.
Kilian and Murphy’s [31] demonstrated that sign restrictions alone, on the pa-
rameters of the model, are not sufficient to solve the drawback. Moreover, the
imposition of bounds on the elasticity of supply does not guarantee the defini-
tion of a more accurate model. In fact, such bounds are arbitrarily estimated
1 by the authors, considering some specific historical episodes such as the out-
break of the Persian Gulf War on August 2, 1990.
2)(The effect of hedging activities) The growing phenomenon of financialization
of the crude oil market is probably reducing the degree of price elasticity of both
the demand and supply. The players (both consumers and producers) that are
making use of these instruments for hedging are increasingly being insensitive
to the spot prices. Baumeister, Christiane, and Gert Peersman (2009) [6] ar-
gued that ”opportunities for hedging could decrease the sensitivity of commercial
dealers to oil price fluctuations in the spot market, contributing to less elastic oil
supply and demand curves. The reduced price elasticities of supply and demand
result in increased oil price volatility which further encourages the development
of a market for derivatives”. According to Krichene (2005) [36], the massive
estimated drop in long-run price elasticity of supply to 0.25 in 1973-2004 from
0.46 in 1918-73, shows a change from a competitive to a market-maker structure,
which supports the hypothesis of Baumeister, Christiane and Gert Peersman.
However, the dedicated literature often has provided countless contradictory es-
timates of the long-run price elasticity of both supply and demand depending on
the time horizon and the reference market. An increasing number of works sup-
ports the idea of a very low long-run price elasticity of supply, for instance (as
summarized by Naoyuki Yoshino, Farhad Taghizadeh-Hesary (2015)[50]) Krich-
ene (2002)[35] computed the short run price elasticity from -0.08 to 0.08 and
long-run price elasticity of 0,10-1.10 for the OPEC members from 1918-1999.
Ramcharran (2002)[43] obtained negative and significant price elasticity for 7
of the 11 OPEC members. Askari and Krichene (2010)[2] got a short run price
elasticity from -0.48 to 0.660 from 1970(Q1)-2008(Q4) and long-run price elas-
ticity of -0,02-0.008. Naoyuki Yoshino, Farhad Taghizadeh-Hesary (2016)[50]
computed a low long-run price elasticity 0.03.
Moreover, oil production is increasingly getting influenced by technological fac-
tors and oil disclosures.(e.g. fracking and shell oil revolution).
Furthermore, the price changes that occurred at the turn of 2014 and 2015, with
a vertical fall in prices, have for several experts revealed that OPEC has had
lost its power to influence global production of oil and thus to affect the prices
in the long run.
All of these reasons let us suppose that a zero long-run price elasticity of supply
as a good approximation for our extent.

1the authors call them empirically plausible bounds

9



4 The Spot Market

To describe the spot price formation process adequately, in the long run, we
need first to explain the connection between supply and demand of crude oil in
the long run.
We assume that spot price is affected by three structural shocks: 1) εst ; 2) εdt ;
3) εecot .
According to D’Ecclesia et al.(2014) [15], Kilian (2006)[29], He et al. (2010)[25],
and Dees et al. (2008)[17], among others, we employ on the demand side the
following demand equation:

dt = α0 t + α1pt + α2gt + α3ε
d
t (1)

where:

• dt is the global demand of crude oil;

• pt is the real oil price;

• gt is a proxy for the global economic activity;

• εdt is the structural shock of demand. It’s the unexpected demand that
cannot be explained by the economic activity (crude oil inventory hold-
ings);

with α1 < 0, α2 > 0 and α3 > 0.
On the supply side, we propose the following supply equation that is supposed
to be inelastic to price, for the aforementioned reasons:

st = β0 t + β1ε
s
t

with β1 > 0, where:

• st is the supply;

• εst is the structural shock of supply supposed to be, according to Kilian
(2006)[29], mainly determined by technological factors and oil disclosures;

According to Kilian (2006)[29] we suppose the global economic activity gt to
depend on the crude oil provided by the market.

gt = γ0 t + γ1st + γ2ε
eco
t

where:

• εecot is the structural shock of the economy;

with γ1 > 0 and γ2 > 0.

In equilibrium, we derive the following reduced form for the long-term real oil
price:
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p∗t =
β1

α1
εst −

α3

α1
εdt −

α2

α1
γ0 −

α2

α1
γ1β1ε

s
t −

α2

α1
γ1β0 −

α2

α1
γ2ε

eco
t − α0

α1
+
β0

α1

detrending all the variables, we get the following system of equations

sdett = β1ε
s
t (2)

gdett = γ1β1ε
s
t + γ2ε

eco
t (3)

p∗ dett = β1

(
1

α1
− α2

α1

)
εst −

α2

α1
γ2ε

eco
t − α3

α1
εdt (4)

These equations, describing the real spot market, are three of the five equations
that we are going to introduce in the empirical model. To derive the remaining
two we need to study the forward-looking behaviours of the traders on the
Futures market.

4.1 The Observability of the forward-looking behaviour

How can we study the effect of shifts in expectations on the spot price in the
short run?

The economic theory argues that spot prices are affected by expectations. There
are two main channels where market expectations manifest themselves: 1) the
level of inventories; 2) the price of the futures markets. In theory, both phenom-
ena are directly observable. For instance, the changes in demand, for above-
ground crude oil inventories (see Kilian and Murphy (2014)[32], Alquist and
Kilian (2010)[1], Christopher R. Knittel and Robert S. Pindyck (2016) [34])
should permit us to observe changes in the expectations of the demand and
supply of crude oil. However, as explained in ”Alquist and Kilian (2010)[1],
unfortunately, ”there are reasons to be skeptical of the reliability of global oil
inventory data, especially in recent years”. On the contrary, the futures market
can provide much more reliable data in this sense.

Can we measure the expectations of speculators trading in the futures market?

The storage standard theory implies the existence of a long run relationship
ensuring that a change in ”expectations”, about future conditions of supply
and demand of crude oil, is automatically reflected in the spot market trough
a change in futures prices or of the convenience yield. (see Alquist and Kilian
(2010)[1]).

p∗t =
1

1 + rT
· [Ft,T + ψt,T −KT ] (5)

where:

• p∗t is the spot price at time t

• Ft,T is the future price at time t with delivery time t+T

• KT constant unit storage cost until time t+T
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• ψt,T is the marginal convenience yield or price of the storage

• rT it’s a constant discount rate

it would be interesting, in order to improve the adequacy of the model, to exploit
somehow this theoretical result for studying the behaviour of the speculators in
the short run when there is a change in the expectations of the long-run price.
Christopher R. Knittel and Robert S. Pindyck (2016)[34] argue that there are
essentially two prevailing channels for speculation: 1) speculation via the fu-
tures market and 2)speculation via inventory accumulation. Splitting the price
formation process into two markets: the cash market2 and the market for stor-
age3 they were able to show that speculative activity, regardless of the channel
where it manifests itself, influences the change in spot prices and the level of
inventories only in the short run. Any changes in long-term prices are only due
to actual changes in demand and supply in the two markets. Therefore specu-
lators can only swing the spot and futures price around the equilibrium price
regardless the correct anticipation of the spot price change over time. They
argue that such a short-run effect depends on the temporary shift of market
expectation, determined by speculators’, from the rational expectation.

Et
(
p∗t+T

)
= Et

(
p̄∗t+T

)
+ st T (6)

• st T shift in the expectation due to the speculators’ wrong4 expectations.

• Et
(
p̄∗t+T

)
is the expected future spot price under rational expectations. It

changes when fundamentals are expected to change.

While in the long run market does not expect any shift from the equilibrium
spot price.

Et
(
p∗t+T

)
= Et

(
p̄∗t+T

)
(7)

In order to study the effect of the speculators expectations we propose to dis-
entangle the expectations of two categories of traders: 1) the rational expec-
tation of the commercials (hedgers) and 2) the speculative expectation of non-
commercials (speculators), and estimate their short-run effects on the spot price
by studying their positions on the market and their propensity to the risk.
To this end, we propose a definition of market risk premium in the period be-
tween t and t+T as the difference between the market expectation at time t of
the spot price at time t+T and the future price at time t with delivery time t+T.

πMkt
t T = Et

(
p∗t+T

)
− Ft,T (8)

2The cash market is the market where purchases and sales for immediate delivery occur
at the “spot price.” The spot price does not equate production (including imports) and con-
sumption (which might include exports) in the short-run. This misalignment of the spot price
determines the change in inventories

3The market for storage is the market where the equilibrium level of inventory is deter-
mined.The price of storage is the cost for the privilege of holding a unit of inventory which
is equal, in a competitive market like this, to the marginal value of the good or service (here
simply called marginal convenience yield ψt,T ).

4According to Knittel and Pindyck (2016) [34]we define wrong expectation as whatever
expectation different from the rational expectation which is not followed by a change in fun-
damentals.
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Notice that: under definitions 6 7 the market risk is affected by speculators
expectations only in the short run.
Despite the fact that speculators expect a risk premium guessed on the base of
their expectations

πspect T = Espect

(
p∗t+T

)
− Ft,T

where

• Espect

(
p∗t+T

)
is the speculator expectation.

in the long run, they can only get the market risk premium πMkt
t T .

5 The Futures Market

A Futures market is a place where participants buy and sell commodity/future
contracts for delivering a commodity on a specified future date. Traditionally
we define two categories of participants: hedgers and speculators. The hedgers
are players that primarily enter into futures contracts to offset a risk exposure
on the spot price, on the contrary, speculators are basically risk seekers and
trade betting on the expectation of the future price of the futures contracts.
Both kinds of agents ”open a position” in the futures market looking some-
how at the risk and their risk propensity. However they close positions for
different reasons: the hedgers, being interested to hedge against market risk on
the spot price, decide depending on the duration and sustainability of this risk
whereas the speculators decide to close a futures contract depending on their
expectations and their propensity risk. We propose to analyse these decisions
in an empirical model introducing detailed data referring to the open interest
of hedgers and speculators.

5.1 Short Hedging operations in the period 2003-2008

If the speculators in the short term have had a role in the rise in prices, occurred
between 2003 and 2008, it would mean that operations such as short hedging
could have been the vehicle whereby speculators determined a distortion of the
market price letting it grow out as described by Knittel and Pindyck (2016)[34].
The short hedge transactions are transactions carried out by hedgers who want
to insure an inventory against the risk of falling spot prices. In this case, the
hedger wants to sell a futures contract at a price Ft,T on the market and keeps
the position as long as a risk on the spot price will be counterbalanced. This
opportunity is permitted as long as there is someone on the market that is
willing to buy the futures contract at price Ft,T .
This kind of trader is usually a speculator having upward expectations.

Espect (p∗t+T ) > Ft,T

where Espect

(
p∗t+T

)
is the speculator’s expectation at time t.

In this case, the speculator wants to buy a futures contract, at price Ft,T on
the market, and to keep the position as long as he is willing to bet on growing
prices. The proposed empirical model, we are going to explain next section, let
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us study how speculators’ upward expectations 5 and the average risk propen-
sity of the market affect oil price.

5.2 Open interest in the long run

The open interest is defined as the total number of long and short contracts
that are held6 by market participants at the end of each day. It is also defined
as a measure of the flow of money into the futures market.
On the basis of what has been explained in the section 3.2, disaggregated futures
open interest, by type of transaction (long and short) and traders (hedgers and
speculator) is a source of useful information to characterise the futures market
in an empirical model, as it is intrinsically connected to the concept of:

• risk propensity;

• market risk

• expectations;

which, as we already saw in section 3.2, influences the behaviour of hedgers and
speculators in the futures market.
For this reason, making use of formula (20), according to Baker and Rout-
ledge(2011)[3]7 we approximate the open interest by a continuously differen-
tiable function g.

We distinguish a different functional for each type of trader.
For the hedger, the open interest OIhedg is defined as follows

OIhedgt T = ghedg
[
πt T ,∆σ

2
t T

]
(9)

for the speculator OIspec is

OIspect T = gspec
[
πspect T ,∆σ2

t T

]
(10)

on the base of definition (6) and (20) we get the following expression (see proof
1 in the appendix):

OIspect T = gspec
[
πt T ,∆σ

2
t T , st T

]
(11)

where:

• ∆σ2
T , is the residual risk (diversifiable risk);

• πspect T , The risk premium for the speculator is represented by the premium8

associated to his own expectation, where πspect T = Et
(
p∗t+T

)
− Ft,T . (See

equation (6)).

5We are confident that this shock is inversely correlated respectively to the downward
expectations shocks of speculators

6 We define the held contracts as purchased futures contracts which are and not already
closed into the market.

7Baker and Routledge (2011)[3] show that changes in open interest and risk premium on
oil futures arise endogenously as a result of heterogeneous risk-aversion.

8The risk premium is the premium required for buying a futures contract.
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• πt T , is the risk premium associated to rational expectation, where πt T =
Et
(
p̄∗t+T

)
− Ft,T ;

• Espect

(
p∗t+T

)
is the speculator expectation;

• Et
(
p̄∗t+T

)
is the rational expectation of future price;

• st T = Espect

(
p∗t+T

)
−Et

(
p̄∗t+T

)
is the shift in the market expectation due

to the speculator expectation. These expectations affect the demand in
the futures market determining price fluctuation ( Knittel and Pindyck
(2016) [34] ).

Notice that, the hedger does not use own expectations, as the speculator does,
because the hedger does not bet on the future price but does only care to ratio-
nally offset the risk on the spot market.
Before we proceed to build the empirical model, we need to make some guesses
we are going to check out after the calibration of the model. For example,
guesses at how open interest theoretically reacts to a change in the risk aver-
sion of the traders (see Baker and Routledge (2011)[3]). In order to do that,
we proxy the risk aversion (or risk propensity) with the above mentioned risk
premiums. We suppose that: the higher the risk aversion (propensity) of the
hedgers, the greater (lower) the recourse to the futures market by the hedger
and thus the greater(lower) the flow of money into the futures market (open

interest)
∂OIhedge

t T

∂πt T
≷ 0. Viceversa, the higher the risk propensity of the spec-

ulators, the higher the recourse to the futures market and thus the higher the

flow of money into the futures market (open interest)
∂OIspect T

∂πspec
t T

> 0. Notice that

speculators are compensated for the assumption of the non-diversifiable risk 9.
The growing risk is instead an incentive for both agents to operate on the futures
market although for different reasons. With the increase of residual risk, the

hedger faces higher risk and therefore opens a futures contract
∂OIhedg

t T

∂∆σ2 ≥ 0.
At the same time risk lover speculators takes positions for the opposite reason
∂OIspect T

∂∆σ2 ≥ 0. Moreover, the expected growth of the price entails the increase of
the expected risk premium by the speculator and thus it acts as an incentive to

enter or to stay in the futures market
∂OIspect T

∂Espec
t (p∗t+T )

≥ 0.

5.2.1 Open interest and risk premium in the short run

We assume that hedgers can be affected by speculators expectations, in the
short run, since they believe that the expected risk premium is the market risk
premium.

∂OIhedget T

∂p∗t
=
∂OIhedget T

∂πMkt
t T

∂πMkt
t T

∂p∗t
(12)

∂OIspect T

∂p∗t
=
∂OIspect T

∂πspect T

∂πspect T

∂p∗t
(13)

9Economic theory states that if traders use futures contracts to hedge against commodity
price risk, the agent who takes the other side of the contracts (called arbitrageur) may receive
compensation for accepting nondiversifiable risk in the form of positive expected returns from
their positions (see Hamilton and Wu (2014))[24]
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This consideration let us imagine a short run hedgers open interest affected by
the shift s

OIhedgt T = ghedg
[
πMkt
t T ,∆σ2

t T

]
(14)

on the base of definition (20) of market risk premium and (6), we get the fol-
lowing expression :

OIhedgt T = ghedg
[
πt T ,∆σ

2
t T , st T

]
(15)

However, if market price converges to the rational value of the crude oil we will
have a different impact of the spot price on the hedgers open interest.

5.2.2 Open interest and risk premium in the long run

In order to complete the empirical model, we study how open interest, for each
agent, changes in the long run when spot price changes.

∂OIhedget T

∂p∗t
=
∂OIhedget T

∂πt T

∂πt T
∂p∗t

(16)

∂OIspect T

∂p∗t
=
∂OIspect T

∂πspect T

∂πspect T

∂p∗t
(17)

We assume that rational expectations are correct in the long run so that the
hedger long run risk premium depends only on the long term price:

πt T = −p∗t (rT ) + ψt,T −KT

πspect T = Espect

(
p∗t+T

)
− p∗t (1 + rT ) + ψt,T −KT

according to Pindick et. al (2016) [34], we impose that the marginal convenience
yield depends on the spot price 10 ψt,T = ψt,T (p∗t ) such that the first derivative
of the marginal convenience yield in the level of price is positive ψ′t,T (p∗t ) > 0
we get the following results:
The spot price impacts on risk premium as follows (see proof 3 in appendix):

∂πt T
∂p∗t

= −(rT ) + ψ′t,T (p∗t ) (18)

∂πspect T

∂p∗t
= −(1 + rT ) + ψ′t,T (p∗t ) (19)

by equation (5), we credibly suppose that
∂πspec

t T

∂p∗t
≤ 0 (see proof 2 in appendix)

10 We assume that the producer is more inclined to spend more to store a higher evaluated
good than a lower evaluated good (see for Pindick (1990)[42] (2016)[34])
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6 Building the Empirical Model

Referring to the Kilian’s model of 2006, it is proposed an empirical model of
crude oil market using a SVAR with an identification scheme based on long run
restrictions (Blanchard and Quah(1989)[8]); We define the following model

A0yt = α+

n∑
i= 1

Aiyt−i + εt

where:

• εt is a vector containing the orthogonal structural innovations

• yt consists of a vector containing in sequence: 1) the percentage change of
the world’s crude oil production, 2) a detrended index of real economic ac-
tivity representing the global business cycle, 3) the index of the detrended
deflated crude oil prices calculated on the base of U.S. refiners’ acquisition
cost 4) the percentage change in open interest for short positions held by
commercial operators 5) the percentage change in open interest for long
positions held by non-commercial operators.

• εst= The first shock can be determined by supply disruption associated
with external events of production policy, by unexpected decisions of pro-
duction policy or even by technological breakthroughs.

• εecot =The second shock regards to unexpected fluctuations in the global
business cycle (’flow demand shock’)

• edt=is the structural shock of the demand for crude oil. It is due to the
change of the optimal level of the inventories on the Market for Storage (
see Knittel and Pindyck (2016)[34]) where the equilibrium level of inven-
tory is determined.

in order to study the remaining shocks, we must identify the factors influencing
both the entry and exit decisions of individual agents about their positions in
the futures market. Based on the theoretical study carried out in 5.2 we propose
to add the following last two structural errors:

• εRiskt = it is a function of the diversifiable risk (see figures 1 and 2) in the
spot market for all maturities T of the traded futures contracts

εRiskt T = fRisk
(
∆σ2

t 1, . . . ,∆σ
2
t n

)
the function is increasing in ∆σ2

t T for all T=1,...,n.

• εBullt = it’s a function of the upward expectations for Non-Commerical
traders (speculators) for all maturities T of the traded futures contracts.

εBullt = fBull
[
Espect

(
p∗t+1

)
− Et

(
p̄∗t+i

)
, . . . ,Espect

(
p∗t+n

)
− Et

(
p̄∗t+n

)]
the function is increasing in the difference Espect

(
p∗t+T

)
−Et

(
p̄∗t+T

)
for all

T=1,...,n.

We consider the variations for all T because we will use aggregate open interest
data for all maturities T.
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6.1 Long run restrictions

We define the set of long run restrictions as follows:

y∗t = Blongεt

y∗t =


sdett

gdett

p∗ dett

M OIhedgt

M OIspect

 =


b1,1 0 0 0 0
b2,1 b2,2 0 0 0
b3,1 b3,2 b3,3 0 0
b4,1 b4,2 b4,3 b4,4 0
b5,1 b5,2 b5,3 b5,4 b5,5




εst
εecot
εdt
εRiskt

εBullt


where:
y∗t is the vector containing the long-term values.

Blong is the estimated identified long-run impact matrix.
sdett the percentage change of the world’s crude oil production;
gdett is a detrended index of real economic activity representing the global busi-
ness cycle;
p∗ dett is the index of the detrended deflated crude oil prices calculated on the
base of U.S. refiners’ acquisition cost;
M OIhedgt is the change in futures open interest held by hedgers aggregated for
all maturities T ;
M OIspect is the change in futures open interest held by speculators aggregated
for all maturities T .

We chose to insert the variations M OIhedgt and M OIspect instead of their levels
in order to deal with an invertible VAR(·) model.

The first three long run restrictions are explained in section 4.

I impose that:

• b1,5 = b2,5 = b3,5 = 0
we assume, as in Kilian (2006)[29] and Christopher R. Knittel and Robert
S. Pindyck (2016)[34], that expectations of price changes have no real
effect, in the long run. Therefore no impact is expected to come from the
upward expectation shock εBullt as well (b1,5 = b2,5 = b3,5 = 0);

• b3,4 = 0
Any change in diversifiable risk does not have effect on price b3,4 = 0 since
market doesn’t compensate unsystematic risk. This hypothesis is consis-
tent with Büyükşahin and Harris (2011)[9] results, in which they find that
price changes precede hedge funds and other non-commercial (speculator)
positions;

• b1,4 = b2,4 = 0
no real effects, in the long run, are also expected on the world’s crude oil
supply and real economic activity.(b1,4 = b2,4 = 0);
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• b1,2 = b1,3 = b2,3 = 0
the other three restrictions (b1,2 = b1,3 = b2,3 = 0) are the simple conse-
quence of the spot market definition made in section 4 where the detrended
price p∗ dett , supply sdett and global economic activity gdett are determined
by only three shocks that are: the structural shock of demand, εdt ; the
structural shock of supply, εst ; the structural shock of the economy, εecot .
See equations: (2) (3) (4);

• b4,5
we suppose that, in the long term, market rational expectations coincide
with the long-term spot price ( see section 5.2.2). Consequently in order
to measure the impact we need nothing but parameters b4,1; b4,2; b4,3.

6.2 The meaning of the long term impact parameters

We argued in section 5.2 that open interests are affected by three factors: risk
propensity, market risk and expectations (see figures 1 2), as they can explain
the decisions, of individual agents, about their position in the futures market.
We are going to consider this factors for explaining the impact to estimate due
to the structural shocks:

• b4,1; b4,2; b4,3; b5,1; b5,2; b5,3

we study the impact of the spot price on open interest through the market
risk premium. (see section 5.2.1) with parameters b4,1; b4,2; b4,3; b5,1; b5,2; b5,3
we estimate the effect that the structural shocks affecting the fluctuations
of the price in the long run (εst ε

eco
t εdt ) have had on the variation of the

analyzed open interests M OIhedgt and M OIspect .

b4,1; b4,2; b4,3
On the base of formula (16) (17) and the conclusions in section 5.2.2 we

expect that, if the hedger is risk averse, as it is supposed to be
∂OIhedge

t T

∂πt T
> 0

and the convenience yield increases instantaneously in price less than the
discount rate

ψ′t,T (p∗t ) ≤ rT
for any T, the long term impacts b4,1; b4,2; b4,3 are negative.

b5,1; b5,2; b5,3

if speculators seek risk premium
∂OIhedge

t T

∂πt T
> 0 the long term impacts

b5,1; b5,2; b5,3 are negative since it has been demonstrated that
∂πspec

t T

∂p∗t
≤ 0

(see proof 2 in appendix) and
∂OIspect T

∂πt T
> 0 for every T (see section 5.2).

• b4,4; b5,4
Parameters b4,4; b5,4 are the impacts of the residual risk on the change of
open interests. We suppose that producers are unable to diversify their
portfolio appropriately as the market does. Therefore they cover all the
risks (diversifiable and undiversifiable) tendentiously through the futures
markets. We expect both parameters are positives since open interest is
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affected by all the market risk regardless of the fact that a part of this
risk (the diversifiable risk) does not produce any effect on the price in the
long run.

• b5,5
The last parameter gives the relevance of the shift in the expectations for
the open interest of the speculator, in the long run, M OIspect

• b1,1; b2,1; b2,2; b3,1; b3,2; b3,3
equations (2) (3) (4) have the parameters of spot price model provided in
section 4.

b1,1 = β1

is the instantaneous equilibrium impact of oil productions shocks on the
percentage change of the world’s crude oil production;

b2,1 = γ1β1

is the instantaneous equilibrium impact of oil productions shocks on the
detrended index or real economic activity representing the global business
cycle gdett . Notice that, the impact of the the supply shocks β1 determines
an indirect multiplicative effect on it;

b2,2 = γ2

is the instantaneous equilibrium impact that unexpected fluctuations in
the global business cycle εecot have on the (proxy of the) global business
cycle gdett ;

b3,1 = β1

(
1

α1
− α2

α1

)
is the instantaneous equilibrium impact of the oil productions shocks on
the spot price. In this case the impact of the the supply shocks β1 deter-

mines an indirect multiplicative effect on the quantity

(
1

α1
− α2

α1

)
which

is positive in sign if and only if the demand for crude oil increases less
than proportionally to the growth in global economic activity α2 < 1;

b3,2 = −α2

α1
γ2

is the instantaneous equilibrium impact that unexpected fluctuations in
the global business cycle have on spot price. notice that it is proportional
to the the instantaneous equilibrium impact γ2 that unexpected fluctua-
tions in the global business cycle εecot have on the (proxy of the) global
business cycle gdett ;

b3,3 = −α3

α1
is the instantaneous equilibrium impact that unexpected fluctuations in
the global demand for crude oil have on the spot price. This impact can
be partially due to speculation via inventory holding.

6.3 Data

We use monthly data over the sample period 1999-M1: 2008-M6. In order to
compare the results with Kilian’s, I’m going to use the same dataset built for
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Kilian and Murphy (2012) 11[31]. The remaining part of data (open interest of
commercials and non-commercials agents) are obtained from U.S. Commodity
Futures Trading Commission (CFTC)12

The price of crude oil is based on U.S. refiners’ acquisition cost of imported
crude oil, extrapolated backwards as in Barsky and Kilian (2002)[4] and deflated
by the U.S. consumer price index without annualising the growth rate of oil
production. Both real prices of oil and real economic activity index, representing
the global business cycle, are expressed in log deviations from their trend and
mean, respectively. The global oil production data are measured in millions
of barrels of oil and have been expressed as cumulative percent changes. The
index of real activity has been saved by cumulating medium rates of increase
in dry cargo ocean shipping freight rates, deflating the nominal index by the
U.S. CPI and linearly detrending. The data referring to open interest have
been transformed, to make them stationary, computing the percentage change
from month to month. CFTC does not provide a unique value for each month.
Therefore, we chose to consider the numerical data provided closer to the end
of the month. Data on the open interest refer to all13 futures long positions by
Non-Commercials traders and all short positions carried out by Commercials
traders14 where we consider Commercials traders as a proxy of hedgers, on the
contrary, the Non-Commercials as a proxy of speculators.

6.4 Model settings and Estimates

According to Lutkepohl and Netsunajev (2014)[41] we consider a lower num-
ber of lags compared to Kilian’s work (Kilian (2006)[29]). The lag order of
the VAR-models is determined using four different criteria. The Akaike Info
Criterion, Final Prediction Error and Hannan-Quinn Criterion suggest two as
the optimal number of lags (searched up to 10 lags of levels) while the Schwarz
Criterion found one to be the best choice. I decided to use a 2nd-lagged Vector
Autoregressive Model VAR(2).
A first estimate doesn’t provide many significant regressors. In order to im-
prove the statistical significance of the estimated parameters, it was decided to
impose a subset of restrictions on the parameters of VAR in reduced form. The
adopted procedure is implemented in J-MulTi4( version 4.24 (Oct 15, 2009)) is
called ”System Testing Procedure” (see Lütkepohl et al. (2006)[40] ) and it does
consist in an algorithm which identifies non-statistically significant parameters
to be canceled out depending on a threshold value of the t-ratio parameters 15.
The estimated long run impact matrix is presented in figure 3 while the short

11http://onlinelibrary.wiley.com/store/10.1111/j.1542-4774.

2012.01080.x/asset/supinfo/JEEA_1080_sm_data_files.zip?v=1&s=

734cbd288fba558c9386bba48c24a0619b5784e3
12 http://www.cftc.gov/oce/web/ReportData/futures_CrudeOil.html
13We mean for all maturities see http://www.cftc.gov/MarketReports/

CommitmentsofTraders/ExplanatoryNotes/index.htm
14CFTC defines commercial and non-traders as follows: ”All of a trader’s reported fu-

tures positions in a commodity are classified as commercial if the trader uses futures con-
tracts in that particular commodity for hedging as defined in CFTC Regulation 1.3, 17 CFR
1.3(z).. . . generally gets classified as a ”commercial” trader by filing a statement with the
Commission, on CFTC Form 40: Statement of Reporting Trader, that it is commercially
”...engaged in business activities hedged by the use of the futures or option markets.”all the
others traders are considered non-commercials.

15 The algorithm has been used in succession increasing the threshold at each step.
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run matrix is presented in figure 4. We will see some details in the next session.
Generally speaking, all coefficients are asymptotically significant at 95% and
show the expected signs, with the only exception of bLong3,1 , bLong4,1 , bLong5,1 , bLong4,2

for the long run coefficients and bShort3,1 , bShort4,1 , bShort5,1 , bShort4,2 , bShort5,2 , bShort5,3 for
the contemporaneous impacts.
Figure 5 represents the impact of the price to a unit shock from each of the five
endogenous variables of the model. They allow four conclusions:
1) the εst has a positive statistically meaningful impact on real price only in the
long run;
2) εdt produces a positive effect, always statistically significant;
3) εecot has a positive and highly significant impact with a peak after the 3-rd
month. Notice that these shocks do not cause reverting behaviour and the im-
pact on the price is persistent over time;
4) εRiskt has a reverting behavior impact on spot price that vanishes after one
year. Every time that the risk increase, there is a weak upward trend of varia-
tion followed by a stronger downward trend after about three months;
5) εBullt has an immediate strong, and statistically significant, impact on the
spot price that mainly runs out after three months.

Figure 3: Estimated identified long run impact matrix

Blong =



0.7992 0 0 0 0
(9.5572) (0.0000) (0.0000) (0.0000) (0.0000)
60.1377 119.5432 0 0 0
(2.0250) (2.4450) (0.0000) (0.0000) (0.0000)
74.1014 188.2361 98.4971 0 0
(1.4868) (2.1638) (3.1828) (0.0000) (0.0000)
−0.0053 −0.0165 −0.0469 0.0589 0

(−0.2955) (−0.5875) (−1, 9634) (8.3474) (0.0000)
−0.1304 −0.2626 −0.1399 0.0861 0.2081

(−1.5992) (−1, 9623) (−2.2975) (3.9054) (7.1013)


Note: bootstraped t-values are reported in parentheses

7 Discussion

The study identifies the global business cycle shock as the one with the greatest
impact on the price fluctuations, in the long term, bLong3,2 = 188.2361, whereas the
structural shock of the demand determines the largest impact in the short term
bshort3,3 = 6.6939. The shocks of the expectations has the second most relevant

impact but broadly lower bshort3,5 = 1.6638 with respect to bshort3,3 = 6.6939.
We notice that:

• εBullt

the long run impact, associated to the shock εBullt , on the open interest

of the non-commercials agent is positive(bLong5,5 = 0.2081) and likely at-
tributed to a shift in the expectation of the speculator, as it doesn’t affect
rational traders(hedgers) open interest (bLong4,5 = 0) and all the other real
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Figure 4: Estimated contemporaneous impact matrix

Bshort =



0.9318 0 0 0 0
(13.1164) (0.0000) (0.0000) (0.0000) (0.0000)

0.7428 4.0769 0 0 0
(1, 9807) (10.9974) (0.0000) (0.0000) (0.0000)
0.2701 1.1568 6.6939 0.6882 1.6638

(0.3453) (1, 9629) (12.6386) (2.4714) (3.2721)
−0.0062 −0.0002 −0.0144 0.0726 0.0087

(−0.8763) (−0.0258) (−1.9605) (9.7115) (2.4374)
−0.0506 −0.0347 −0.0215 0.1174 0.2838

(−1.2076) (−0.9909) (−0.6492) (4.1461) (8.7609)


Note: bootstraped t-values are reported in parentheses

variables coherently with the theory provided by Kilian (2006)[29] and
Knittel and Pindyck (2016)[34]. The increase in the price expectations
pushes traders, to take a long position or delay the exit from the acquired
position in the futures market.
The positivity of the parameter bShort4,5 = 0.0087 is probably due to the
weak but statistically significant effect that the shifts in the speculator’s
expectations determine on the market risk perceived by the hedgers in
the short run (see section 5.2.1). This means that in the short term the
shock εBullt distorts the hedgers’ rational expectations inducing them to
take and hold a position on the market. It is estimated a contempora-
neous and statistically significant positive impact ( bShort3,5 = 1.6638 see
figure 5), on the short-term fluctuations in the spot price, comparable for
magnitude to the impact of the global business cycle on the crude oil real
price fluctuations bShort3,2 = 1.1568.
Growing speculators expectations have played a relevant role in rising
prices but quite lower compared to the global demand shocks (see bShort3,3 =
6.6939 figure 5).

• εRiskt .
The shock εRiskt is likely to be associated with a rise of diversifiable risks as
it has a positive impact on the change of the open interest for both types of
agents (bShort4,4 = 0.0726; bShort5,4 = 0.1174 bLong4,4 = 0.0589; bLong5,4 = 0.0861)

but no effect on the spot price, in the long run (bLong3,4 = 0). Generally
speaking, traders (both hedgers and speculators) are more interested in
entering into futures contracts when the market risk increases, except in
cases where traders are indifferent to risk. bShort3,4 = 0.6882 suggests that
the non-diversifiable market risk has a significant positive effect on price in
the short term and the increase of diversifiable risks could have probably
played a role in the last price hike from January 2007 to June 2008 ( see
figure 5).

The positive parameters bShort4,4 = 0.0726 and bLong4,4 = 0.0589 (see figure 3)
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is likely due to the inability of hedgers to diversify their portfolio. There-
fore, they have to take and hold positions, on the futures market, to cover
all the market risks (diversifiable and undiversifiable) through the futures
markets. In this way, both markets permit that diversifiable risk vanishes
in the long run bLong3,4 = 0.

The positive parameter bLong5,4 indicates that speculators bet even on di-
versifiable risk in the long term.

Watching at figure 5, we notice that the dynamic evolution of the impact
of the two shocks εRiskt and εBullt on spot price is mean reverting around
zero and remarkably similar (coherently with Christopher R. Knittel and
Robert S. Pindyck (2016)[34]). This shows how the market perceives the
shift in the expectations of speculators as an additional source of diversi-
fiable risk whose effects on the price disappear after less than a year.

• εecot
In the long run, the unexpected fluctuations in the global business cycle
have a profound impact on price bLong3,2 = 188.2361, but it doesn’t produce
significant effects on the propensity of traders to take and hold a position
in the future markets bLong4,2 = −0.0165, bLong5,2 = −0.2626. In the short

run, the impact on price is is high but reduced bShort3,2 = 1.1568 moreover

no significant effects are observable on open interest bShort4,2 = −0.0002,

bShort5,2 = −0.0347. This means that, on average, traders operate within a
sufficiently short period, such that unexpected fluctuations in the global
business cycle do not induce a change in open interest.

• εdt
The sudden shock in the global demand for crude oil is the most relevant
factor for price fluctuations. In the long run, demand shock has an in-
tensely positive impact bLong3,3 = 98.4971 on price. In the short term, a

remarkable positive impact is also observable on price bShort3,3 = 6.6939,
which is characterised by the highest magnitude with respect the others
impacts. Notice that, the global demand shocks determine an impact on
price which is more than four times stronger than that induced by mar-
ket expectations shocks bShort3,3 = 1.6638 in the short run. In the near

term ( the first 8 months), global demand shock εdt has a stronger impact
than the business cycle shock εecot . This let us imagine that speculative
inventory holdings may have played a significant role in price fluctuations.
The effects on open interest is negative both in the short and long run:
bShort3,4 = −0.0144 bShort3,5 = −0.0215 bLong3,4 = −0.0469 bLong3,5 = −0.1399.

• εst
The cumulative impact of the supply shocks is invariably positive from
October 2002 June 2008. During the same period, a marked increment
of the spot price has been observed. Unexpected fluctuations in supply
could have had a positive effect on the growth of the price in the period.
Notice that after 18 months a statistically significant positive effect on
price become observable.
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• Null parameters
The null contemporaneous impact coefficients bShort1,4 ; bShort1,5 ; bShort2,4 ; bShort2,5 ;
suggest that the expectations of speculators and the risk of non-diversifiable
market do not produce real effects on the fluctuations of the global supply
of crude oil and global business cycle;
the null contemporaneous impact coefficients bShort1,2 and bShort1,3 indicate
that unexpected fluctuations in the global business cycle and demand for
crude oil don’t determine an immediate effect on oil production;
the null contemporaneous impact coefficients bShort2,3 indicates that unex-
pected fluctuations in the global demand for crude oil don’t instanta-
neously affect the global business cycle;

It is worth to notice that the effect that price fluctuations determines on
the open interest, through the parameters bLong4,1 ,bLong4,2 ,bLong4,3 ,bLong5,1 ,bLong5,2 ,bLong5,3

bShort4,1 ,bShort4,2 ,bShort4,3 ,bShort5,1 ,bShort5,2 ,bShort5,3 , is likely to be negative for both
categories of traders in both the short and long term. in particular:
the negative parameters bLong4,1 ,bLong4,2 ,bLong4,3 can be interpreted as due to
a marginal change of the convenience yield, which on average is lower
than the discount rate ψ′t,T (p∗t ) < (rT ) see equation (18). The negative

parameters confirm the theoretical assumption
∂πspec

t T

∂p∗t
≤ 0 explained in

appendix (see proof 2).

8 Conclusion

This study provides a structural interpretation of the price fluctuations in the
global market for crude oil based on the analytic framework proposed by Christo-
pher R. Knittel and Robert S. Pindyck (2016)[34] and Kilian (2006) [29]. I have
proposed a SVAR empirical model with long-run restrictions, à la Blanchard-
Quah, whereby we have been able to estimate the long and short-term effect, of
structural shocks on the spot price fluctuations.
In order to explain the effect of the speculation activity on the spot price, I em-
ployed a dataset of monthly data built matching the dataset used in Kilian and
Murphy (2012) 16[31] with a CFTC dataset of futures open interests disaggre-
gated by type of trader (commercial and non commercial) and type of operation
(long and short). Some theoretical considerations have been developed to derive
and interpret structural shocks from the open interest.
A long-term association based on the standard theory of the storage has led us
to explain the open interest as a function of the: 1) risk propensity; 2) market
risk; 3) expectations of the market price. Thus, we have used these definitions
to estimate the short and long run effect of structural shocks on the spot price.
The empirical estimation of the model has shown some remarkable results: 1)
a growing diversifiable risk results in a temporary increase of ”short-term” spot
price; 2) the up-warding changes in expectations, exerted by speculators on the
futures market, produce a prompt significant short-run effect on the spot price;
3) short run spot price fluctuations react, with greater strength, to unexpected

16http://onlinelibrary.wiley.com/store/10.1111/j.1542-4774.

2012.01080.x/asset/supinfo/JEEA_1080_sm_data_files.zip?v=1&s=

734cbd288fba558c9386bba48c24a0619b5784e3
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shocks of the global oil demand, which prove how important are the changes in
inventory holdings. In particular, in the short run, I believe that the observed
strong impact of the shocks of the global oil demand (inventory holdings) can
likely be explained by the speculative demand. In fact, the short-run impact of
the demand shock on the spot price strangely takes a long time (eight months in
mean) to be overtaken by that of the business cycle shock, which is inexplicable
if it’s only due to strictly technical production needs.
In conclusion, in the short run, we observe that: 1) spot price fluctuations
strongly reacts to a shift in expectations, determined by speculators operating
in the futures market; 2) global crude oil demand shocks (unexpected changes
in inventory holdings) influence the spot price to a greater extent. Speculative
inventory holdings probably have a bigger effect on spot price than speculative
operations in the futures market; 3) different types of risks (diversifiable and
non-diversifiable) determine different effects on the spot price. The market does
not immediately identify the nature of risk. It would seem that the global mar-
ket needs at least one month to determine the nature of a diversifiable risk; 4)
shocks in the global economic activity and global supply do not produce the
strongest effect on the spot price immediately.

26



References

[1] Ron Alquist and Lutz Kilian. What do we learn from the price of crude oil
futures? In: Journal of Applied Econometrics 25.4 (2010), pp. 539–
573.

[2] Hossein Askari and Noureddine Krichene. An oil demand and supply model
incorporating monetary policy. In: Energy 35.5 (2010), pp. 2013–2021.

[3] Steven D Baker and Bryan R Routledge. The price of oil risk. In: (2011).

[4] Robert B Barsky and Lutz Kilian. Do we really know that oil caused the
great stagflation? A monetary alternative. In: NBER Macr. Annual
2001. MIT Press, 2002, pp. 137–198.

[5] Christiane Baumeister and Lutz Kilian. Real-time analysis of oil price
risks using forecast scenarios. In: (2011).

[6] Christiane Baumeister and Gert Peersman. Sources of the volatility puzzle
in the crude oil market. In: Available at SSRN 1471388 (2009).

[7] Cristina Bencivenga, Rita L D’Ecclesia, and Umberto Triulzi. Oil prices
and the financial crisis. In: Review of Managerial Science 6.3 (2012),
pp. 227–238.

[8] Olivier Jean Blanchard and Danny Quah. The Dynamic Effects of Aggre-
gate Demand and Supply Disturbances. In: The American Economic
Rev. 79.4 (1989), pp. 655–673.
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APPENDIX

Proof 1

We want to demonstrate that speculator’s risk premium can be decomposed into
the sum of the market risk premium and a shift due to speculators’ expectations.
We first give some definitions:
we define market risk premium as a difference between the expected future spot
price by the market Et

(
p∗t+T

)
and the futures price Ft,T

πMkt
t T = Et

(
p∗t+T

)
− Ft,T (20)

and the speculator risk premium as a difference between the expected future
spot price by speculator Et

(
p∗t+T

)
and the futures price Ft,T .

πspect T = Espect

(
p∗t+T

)
− Ft,T

where Et
(
p∗t+T

)
is the market expectation and Espect

(
p∗t+T

)
is the speculator’s

expectation.

In the short term, the expected future spot price is the sum of two elements:
the expected future spot price under rational expectations Et

(
p̄∗t+T

)
and a shift

st T due to the speculator’s expectation

Et
(
p∗t+T

)
= Et

(
p̄∗t+T

)
+ st T

Thus in the short run the market risk premium is given by the following expres-
sion:

πMkt
t T = Et

(
p̄∗t+T

)
− Ft,T + st T

if the shift in the market expectation is defined as follows

st T = Espect

(
p∗t+T

)
− Et

(
p̄∗t+T

)
market risk premium become

πMkt
t T = Espect

(
p∗t+T

)
− Ft,T = πspect T

this result is sufficient to demonstrate that formulas (10) and (11), in fact

πspect T = Et
(
p̄∗t+T

)
− Ft,T + st T

moreover by definition
πt T = Et

(
p̄∗t+T

)
− Ft,T

therefore

πspect T = πt T + st T
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Proof 2

By equation (5), we quantify the increment of the spot price, from time t to
time t+ 1, assuming that the discount rate rT and the unit storage cost KT to
be constant:

p∗t+1 − p∗t =
1

1 + rT
· [Ft+1,T − Ft,T + ψt+1,T − ψt,T ]

by transformation

1 + rT −
Ft+1,T − Ft,T
p∗t+1 − p∗t

=
ψt+1,T − ψt,T
p∗t+1 − p∗t

being futures prices positively correlated with spot prices we can write the fol-
lowing inequality

1 + rT ≥
ψt+1,T − ψt,T
p∗t+1 − p∗t

Assuming that:
1) the time change is infinitesimal;
2) the producer is more inclined to spend more to store a higher evaluated good
than a lower evaluated good , as in in Pindick (1990)[42] (2016)[34], meqaning
that ψ′t,T (p∗t ) > 0
we are allowed to write that

−(1 + rT ) + ψ′t,T (p∗t ) ≤ 0

Proof 3

πspect T = Et
(
p∗t+T

)
− p∗t (1 + rT ) + ψt,T −KT

by equation 6 we get:

= Et
(
p̄∗t+T

)
+ st T − p∗t (1 + rT ) + ψt,T −KT

assuming st T = Espect

(
p∗t+T

)
− Et

(
p̄∗t+T

)
as done in section 5.2

= Espect

(
p∗t+T

)
− p∗t (1 + rT ) + ψt,T −KT
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Table 1: VAR in reduced form.

Reduced form: yt = α∗ +A∗1yt−1 +A∗2yt−2 + ut

exogenous variables: yt =

[
sdett gdett p∗ dett M OIhedgt M OIspect

]
deterministic variables: α

endogenous lags: 2

exogenous lags: 0

sample range: [1999M1, 2008M8], T = 116

estimation method: EGLS

Restrictions on A∗1 A∗1 =



0 0 0 0 0

a121 a122 0 0 0

0 a132 a133 0 a135

0 a142 a143 0 a145

0 0 a153 0 a155



Restrictions on A∗2 A∗2 =



a211 0 0 0 0

a221 a222 0 0 0

a231 0 a233 0 a235

0 0 a243 a244 0

0 0 a253 0 a255



Restrictions on α∗ α∗ =



α1

α2

α3

α4

α5
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Table 2: VAR in structural form.

Structural form: A0yt = α+A1yt−1 +A2yt−2 + εt

y∗t = Blongεt ut = Bshortεt

exogenous variables: yt =

[
sdett gdett p∗ dett M OIhedgt M OIspect

]
deterministic variables: α

endogenous lags: 2

exogenous lags: 0

sample range: [1999M1, 2008M8], T = 116

estimation method: Blanchard-Quah

Restrictions on Blong Blong =



b1,1 0 0 0 0

b2,1 b2,2 0 0 0

b3,1 b3,2 b3,3 0 0

b4,1 b4,2 b4,3 b4,4 0

b5,1 b5,2 b5,3 b5,4 b5,5
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Table 3: Estimated lag 1 matrix coefficients.

Coefficients value t-values

aLong1,2,1 0,771 1.944

aLong1,2,2 1.323 15.901

aLong1,3,2 0.098 2.344

aLong1,3,3 1.257 14.004

aLong1,3,5 -5.404 -3.101

aLong1,4,2 0.000 1.238

aLong1,4,3 0.005 5.571

aLong1,4,5 0.042 -2.224

aLong1,5,3 0.027 6.793

aLong1,5,5 -0.186 -2.406
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Table 4: Estimated lag 2 matrix coefficients.

Coefficients value t-values

aLong2,1,1 -0.166 -1.796

aLong2,2,1 0.866 2.075

aLong2,2,2 -0.357 -4.328

aLong2,3,1 -1.637 -2.325

aLong2,3,3 -0.336 -3.817

aLong2,3,5 -2.589 -1.555

aLong2,4,3 -0.006 -6.163

aLong2,4,4 -0.172 -2.397

aLong2,5,3 -0.028 -7.260

aLong2,5,5 -0.178 -2.668

Table 5: Estimated lag 2 matrix coefficients.

Coefficients value t-values

α1 0.090 1.033

α2 0.581 1.408

α3 1.108 1.407

α4 -0.000 -0.028

α5 0.059 1.926
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Table 6: modulus of the eigenvalues of the reverse characteristic polynomial:

| z |

1.0580 1.0899 2.6475 19.8168 1.8466 1.8466 2.4547 2.4547

2.4109 2.4109
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Table 7: Estimated identified long run impact coefficients.

Coefficients Estimates Standard Errors t-values

bLong1,1 0,79920 0,0836 9,5572

bLong2,1 60,13770 29,6977 2,025

bLong3,1 74,10140 49,838 1,4868

bLong4,1 -0,00530 0,0178 -0,2955

bLong5,1 -0,13040 0,0816 -1,5992

bLong2,2 119,5432 48,8925 2,445

bLong3,2 188,2361 86,9931 2,1638

bLong4,2 -0,0165 0,0281 -0,5875

bLong5,2 -0,2626 0,1373 -1,9623

bLong3,3 98,4971 30,9462 3,1828

bLong4,3 -0,0469 0,025 -1,9634

bLong5,3 -0,1399 0,0609 -2,2975

bLong4,4 0,0589 0,0071 8,3474

bLong5,4 0,0861 0,022 3,9054

bLong5,5 0,20810 0,0293 7,1013
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Table 8: Estimated identified short run impact coefficients.

Coefficients Estimates standard errors t-values

bShort1,1 0,9318 0,071 13,1164

bShort2,1 0,7428 0,4172 1,9807

bShort3,1 0,2701 0,7822 0,3453

bShort4,1 -0,0062 0,007 -0,8763

bShort5,1 -0,0506 0,0419 -1,2076

bShort2,2 4,0769 0,3707 10,9974

bShort3,2 1,1568 0,6753 1,9629

bShort4,2 -0,0002 0,0066 -0,0258

bShort5,2 -0,0347 0,035 -0,9909

bShort3,3 6,6939 0,5296 12,6386

bShort4,3 -0,0144 0,0075 -1,9605

bShort5,3 -0,0215 0,0332 -0,6492

bShort3,4 0,6882 0,2785 2,4714

bShort4,4 0,0726 0,0075 9,7115

bShort5,4 0,1174 0,0283 4,1461

bShort3,5 1,6638 0,5085 3,2721

bShort4,5 0,0087 0,0036 2,4374

bShort5,5 0,2838 0,0324 8,7609
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Figure 5: Impulse-response functions of price

The figure displays the impulse responses of the index of the detrended deflated
crude oil prices to a one standard deviation change in the five structural shocks.
The responses are significant at the 95% level.
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Table 9: Legend of the figure 5:

Percentage change of the world’s crude oil pro-
duction

s = sdett

Detrended index of real economic activity rep-
resenting the global business cycle;

g = gdett

Index of the detrended deflated crude oil prices
calculated on the base of U.S. refiners’ acqui-
sition cost

p = p∗ dett

Change in futures open interest held by
hedgers aggregated for all maturities T

dOIhedg =M OIhedgt

Change in futures open interest held by spec-
ulators aggregated for all maturities T

dOIspec =M OIspect

Table 10: PORTMANTEAU TEST (H0:Rh=(r1,...,rh)=0)

Reference: Lütkepohl (1993), Introduction to Multiple Time
Series Analysis, 2ed, p. 150.

tested order: 16

test statistic: 344.8805

p-value: 0.9017

adjusted test statistic: 372.1226

p-value: 0.6039

degrees of freedom: 380.0000
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Table 11: LM-TYPE TEST FOR AUTOCORRELATION with 16 lags

Reference: Doornik (1996), LM test and LMF test (with F-
approximation)

LM statistic: 437.9083

p-value: 0.0928

df: 400.0000

Table 12: ARCH-LM TEST with 16 lags

variable teststat p-Value(Chi2) skewness kurtosis

u1 18.3582 0.3033 1.4054 0.1595

u2 7.9610 0.9500 0.5406 0.9173

u3 11.3066 0.7902 0.7967 0.6851

u4 17.3801 0.3614 1.3148 0.2081

u5 33.0255 0.0073 3.0819 0.0004

Table 13: MULTIVARIATE ARCH-LM TEST with 7 lags

VARCHLM test statistic: 1581.3156

p-value(chi2): 0.4506

degrees of freedom: 1575.0000
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European Energy Security: the Substitutability

of European Crude Oil Imports from Russia

Gabriele D’Amore∗

May 7, 2017

Abstract

The study is meant to be a contribution to the current debate on the
diversification possibilities in EU for reducing the dependency on Russian
crude oil and ensuring the energy security of the European Union (EU).
We focus on the aggregate demand for crude oil in EU with the aim of
investigating the degree of substitutability of crude oil imports from the
Former Soviet Union countries (FSU)1 and crude oil imports from four
alternative regions (America, Middle East, Europe, Africa). Following
Fuss (1977)[27] and Serletis (2010) [59] we employ an econometric model
of intra-fuel substitution, using a nonlinear seemingly unrelated regression
(SUR) estimator, to assess the aforementioned degree of substitutability
in terms of Morishima elasticities of substitution. We use the most recent
dataset, published by the European Commission, consisting of a collection
of imported volumes and CIF2 prices of crude oil by country of origin. The
results indicate that the crude oil provided by former Soviet Union (FSU)
countries is strongly substitutable with those imported from African and
Middle Eastern countries whilst it is not substitutable with those imported
from European and American countries.

Keywords: Flexible Functional Form, Translog Cost Function, Theoretical
regularity, Crude Oil, TTIP, Russia, Morishima elasticities, Intra-Fuel Substi-
tution, Energy Security
JEL-Classification: C2 D4.

1 Introduction

The securitization of the European Union energy supply is one of the most crit-
ical problems the EU member states are facing today. This issue has gained
attention since the first major oil crisis of the 70’s when the OPEC countries
adopted a strategy of reducing supply as a warning to the West not to sup-
port Israel during the Arab-Israeli conflict. Energy crisis led Europe to search

∗Sapienza University of Rome. Mail to: gabriele.damore@uniroma1.it. Corresponding
author at: Department of Economics and Social Sciences, Piazzale AldoMoro, 5 - 00185
Rome(IT).

1The FSU countries are: Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan,
Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan.

2CIF prices stand for cost, insurance and freight prices
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for new sources of supply in order to try to limit the energy dependency on
OPEC countries. Consequently, Russia and some other Eurasian countries were
identified as alternative suppliers (see Helen (2010) [31]).
However according to authors like Morelli (2006) [50], Baran (2007) [6], Belkin
(2008) [9], Woehrel (2010) [65], Badalov (2012) [5], this problem still remain
crucial. The Russian solution to the European energy security problem, appears
now to be anachronistic for three main reasons:

a. Recently the growing geopolitical instability of Eurasian countries has
made EU concerned about Russia’s partnership, see Mamlyuk (2015) [47].
According to European Commission, ”EU economy seems to be exposed to
serious risks related to energy prices, including potential oil shocks risks”
(see Hedenus et al. (2010)[29]) so that the energy security has become
a key objective of the European political agenda in the aftermath of the
outbreak of the crisis in Ukraine.

b. At present ”EU energy security depends heavily on Russian supply, and
Russian government would be lobbying to consolidate and increase the de-
gree of dependence of Europe”. Almost 50% of its natural gas and 30% of
its oil is imported from Russia and a consistent number of individual EU
countries is geographically positioned so as to be naturally predisposed to
assume a position of dependence on Russia becoming both economically
and strategically vulnerable.
Many economists have expressed concern about this high degree of addic-
tion, see Palonkorpi (2007) [53], Baran (2007) [6]. Other authors believe
that a partnership with Russia is unavoidable as there is a high level of
interdependence between the two economic areas such that this situation
should remain unchanged for a long time, see Paillard (2010) [52]. Many
countries have signed long-term contracts with Russia.

c. The increase of energy needs in time will likely enforce the degree of de-
pendence of Europe on Russian supply. Total energy imports amount
about 50%, and the European Commission expects this figure to rise to
65% by 2030. Last Eurostat statistic (preliminary data for 2012) of EU-28
Gross inland consumption (as % of total Mtoe) shows that crude oil and
petroleum products consumption continue to dominate the energy mix.

For all the above reasons, Europe still appears to need a reliable security strat-
egy that aims the diversification of the supply routes. This policy would reduce
the dependence on imports overall and integrate European energy system to
make it more resilient to external supply disruptions. However diversifying en-
ergy supply routes does not necessarily guarantee energy security since it strictly
depends on the refinery capabilities to adjust production to different types of
crude oil acquired at different costs.
A great unknown is about the possibility to substitute Russian crude oil with
that coming from American continent and in particular with that produced
in the United States which, by the way, over the last years, has become the
leader in the extraction of oil with new techniques (fracking and shale oil). This
unprecedented situation could potentially let the U.S. become a net exporter
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nation of this new type of crude in the next future.
A question rise spontaneously, is American crude oil a possible alternative choice
for Europe? In order to answer this question we need to investigate the benefits
and the costs associated with this option and the other alternatives.
The central idea of the paper is to treat the quantities of imported crude oil
as independent factors of the European production system and then to verify
the degree of substitutability of crude oil imports from the Former Soviet Union
(FSU) countries and crude oil imports from four alternative regions (America,
Middle East, Europe, Africa) by calculating the Morishima elasticity of substi-
tution (natural extension of the Hicksian elasticity , as we shall see) following
the methodology developed by Fuss (1977)[27] and Serletis (2010) [59] and ex-
ploiting a nonlinear Seemingly Unrelated Regression (SUR) estimator.
The paper is composed of seven chapters:
chapter 1 is devoted mainly to listing the purposes of research; chapter 2 is
devoted to the analysis of energy security in Europe with a particular focus on
relations between Europe and the country’s most important supplier of energy
product, Russia. The chapter will also analyze, the degree of dependency on
external sources and the critical factors determining the weaknesses in energy
security in the European Union; chapter 3 is focused on the Russian oil supply,
(production, transport routes, the Russian oil grades, taxation) and on its en-
ergy strategy up to 2030; chapter 4 is devoted to analyze the European crude oil
demand and to list relevant factors affecting the demand itself (location of the
petroleum extraction field, chemical properties, political and macroeconomic
factors); chapter 5 and chapter 6 are devoted to explain the followed method-
ology and the related literature to support the choice of both the theoretical
approach and the empirical analysis techniques; chapter 7 is dedicated to the
empirical analysis and conclusions.

2 Energy Situations and Security: Energy Geopol-
itics in the EU and Russia

2.1 Energy security

There are several definitions of energy security in literature. The European
Union does not distinguish between energy security and supply security, mean-
ing that energy security is synonymous with stable and affordable supplies. In-
deed, according to the ‘Energy 2020’ - a document of the European Commission
- the main objective of the EU in terms of energy security is “to ensure the un-
interrupted physical availability of energy products and services on the market,
at a price which is affordable for all consumers (private and industrial), while
contributing to the EU’s wider social and climate goals” (European Electricity
Grids Initiative and others (2010) [38]). Cristian von Hirschhausen defines it as
a state where the risks related to high dependence on energy imports, political
instability in producing and/or transit countries, as well as of other adverse
contingencies, are mastered at reasonable economic costs (von Hirschhausen C.,
(2005) [60]).
For the International Energy Agency (IEA) the uninterrupted availability of
energy sources at an affordable price is an inescapable characteristic for energy
security. Apparently, the achievability of the energy security is affected by the
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time horizon of its target. Therefore, long-term energy security requires timely
investments to supply energy in line with economic developments and environ-
mental needs. On the other hand, short-term energy security is possible when
energy system can react promptly to sudden changes in the supply-demand bal-
ance (IEA, (2015)).
The World Energy Council (WEC) defines Energy Security as: ”the effective
management of primary energy supply from domestic and external sources, the
reliability of energy infrastructure, and the ability of the participating energy
companies to meet current and future demand” (Philip Lowe - World Energy
Council (2015))[44]. In the light of that definition, WEC provides an index
of energy sustainability which is called “Energy Trilemma Index” which ranks
countries concerning their ability to provide sustainable energy policies on the
base of 3 dimensions: Energy Security, Energy Equity and Environmental Sus-
tainability. On the face of those definitions we can highlight some relevant
dimensions for having energy security: 1) internal production: 2) logistics in-
frastructures 3) capability to exploit a differentiated bundle of energy resources
4) dealing with reliable suppliers.

2.2 Energy Policy of the European Union

The Treaty on the Functioning of the European Union (TFEU) directly states
what is meant by energy security and gives a guideline for the energy policies of
individual states establishing the principles by which these are to be formulated.
In the article 194, it is established that ”Union policy on energy shall aim, in a
spirit of solidarity between member states, to: (a) ensure the functioning of the
energy market; (b) ensure security of energy supply in the Union; (c) promote
energy efficiency and energy saving and the development of new and renewable
forms of energy; and (d) promote the interconnection of energy networks”.
Moreover, the European Parliament and the Council are in charge of determin-
ing how to achieve these guiding principles, after consultation with the Eco-
nomic and Social Committee and the Committee of the Regions, not affecting
any ”member state’s right to determine the conditions for exploiting its energy
resources, its choice between different energy sources and the general structure
of its energy supply”.
According to the European Commission [17], the European Union currently im-
ports 53% of the energy it consumes (almost 90% of its crude oil, 66% of its
natural gas and 42% of solid fuels). In 2013 the demand for external energy was
worth approximately 400e billion of which 300e billion only for crude oil and
oil products.
The energy dependence rate3, was 53,4% in the EU28 in 2012 (table 1), nearly
stable since 2008.

3The energy dependence rate is a percentage that stands for imports minus exports divided
by gross consumption. Gross consumption is equal to the sum of the gross inland consump-
tion and the fuel (oil) supplied to international marine bunkers. A positive dependency rate
indicates a net importer of energy. A value lower than 100% occurs when net imports are
lower than gross consumption. When the value is greater than 100%, energy products are
supposed to be stored in inventories in the year of import.
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Table 1: Dependency rates, 2013. - Eurostat Data

Area Tot Depen-
dency

Tot
petroleum
prod.

Natural
Gas

Solid Fuel

Belgium 77,5 102 100,5 95,1
Bulgaria 37,8 103,7 93,2 16,4
Czech Rep. 27,9 96,3 100,2 -11,6
Denmark 12,3 -13,7 -23,1 90,7
Germany 62,7 96,1 87,2 44,5
Estonia 11,9 59,9 100 -0,1
Ireland 89 100,2 95,9 72,4
Greece 62,1 94,2 100 3,2
Spain 70,5 97,4 98,6 70,3
France 47,9 98,9 97,4 93,4
Croatia 52,3 77,1 31,8 110,1
Italy 76,9 90,7 88,1 96,2
Cyprus 96,4 101 100
Latvia 55,9 100,4 115,6 88,8
Lithuania 78,3 93,2 100 99,7
Luxembourg 96,9 100,3 99,6 100
Hungary 52,3 83,9 72,1 29,5
Malta 104,1 104,6
Netherlands 26 94,7 -86,8 111,6
Austria 62,3 92,9 75,5 93,8
Poland 25,8 91,3 74,2 -10,4
Portugal 73,5 97,2 101,5 95,4
Romania 18,6 47 11,9 18,9
Slovenia 47,1 95,8 99,6 19,4
Slovakia 59,6 88,5 95,6 80,6
Finland 48,7 106,2 99,9 65,7
Sweden 31,6 101,5 99,1 82,4
UK 46,4 39,8 50,1 82
Iceland
Norway -470,2 -456,7 -1566,7 -87,4
Switzerland
Montenegro 26,6 100 -1,2
Macedonia 47,9 93,7 100,1 9,7
Albania 25,1 25,6 0 99
Serbia 23,6 58,2 80,5 3,4
Turkey 73,3 92,5 97,8 54,7
EU-28 53,2 87,4 65,3 44,2

Differentiating the analysis by type of commodities 1 we can see that crude oil
is the commodity for which Europe is more dependent as net importer. In fact,
the dependency rate for all petroleum products is 86.4% for the EU28; almost
all countries have a value higher than 80% apart from the Estonia, Croatia
and Romania, Uk, Albania, Serbia with respectively 59.9%, 77.1%, 47%, 39,8%,
25.6%, 58,2%. The only net exporters of crude oil are Denmark with a value
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Figure 1: Volume of Crude Oil Imports in the European Union (EU27) Period
1-12/2014 by origin. (EXTRA EU)

Source: EUROPEAN COMMISSION Directorate-General for Energy.
Note: the value is calculated using CIF prices

of -13.7% and Norway -456,7%. Over the last twenty-three years, this trend
is consolidating. Europe owns only 0.6% of global oil and 2.0% of natural gas
reserves available in the world. This situation makes Europe vulnerable to ex-
ternal energy suppliers, especially to those providing crude oil, which is the first
fuel used in Europe.
Indisputably, Russia is the European Union’s largest supplier. According to
Eurostat (dataset:nrg123a), in 2014 the EU’s (EU28) three biggest suppliers of
crude oil (without NGL) are respectively Russia, Norway, and Nigeria with re-
spectively 28,86%, 12,44% and 8,67%. According to the European Commission
(Directorate-General for Energy)4 if we also consider the Former Soviet Union
nations (FSU) still under the economic influence of Russia, they supply to EU27
about 40% of the total value imported (see figure 1). In total, Europe imports
3.652.941 per 1000 bbl of crude oil. Former Soviet Union (FSU) nations supply
the EU with around 1.462.333 per 1000 bbl of crude oil.
According to EU forecasts the overall dependence on energy imports is expected
to grow if alternative energy sources would not be implemented in the nearest
future.
In recent years the EU tried to make progress in the construction of an effective
and sustainable energy supply plan. The greatest concern arises from the high
level of dependence that some countries, particularly the east European ones,
face on foreign suppliers such as Poland and Slovakia. Therefore, the overdepen-

4see eu-coi-from-extra-eu-2014-01-12.pdf that can be found at the following link
http://ec.europa.eu/energy/sites/ener/files/documents/crude-oil-imports2014.zip
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dence on Russia and the consequent monopolistic/oligopolistic pricing become
the big problems to solve.
The European Union has established guidelines for that purpose: diversification
of routes and suppliers, reduction of demand, transparency of pricing mecha-
nisms and solidarity in the region. However, the low bargaining power poses
huge problems for attaining those objectives. All efforts aimed at improving
cooperation between the two economic areas would seem desirable for both.
The high level of mutual dependency should induce both Russia and the EU to
promote a ”respectful relationship”.
During the period the Cold War, EU and USSR adopted stable Import-Export
relations. Today, both actors have made efforts to improve the ”cooperation” in
the field of energy that demonstrate the acknowledge of their mutual strategic
significance. However, Eu and Russia are now pursuing conflicting objectives.
Europe is intent on building a very ambitious plan of a “liberal” EU consumer
market, although it plays the weaker role of the net ”importing nation” of energy
products, and Russia pursues aspirations to increasingly influence the European
market with the intent to maximise strengthen ”monopoly” position and there-
fore their profits.
Several attempts at dialogue have taken place over the last 15 years. One of
them is the 6th EU-Russia Summit in Paris in October 2000 where the primary
goal was “ to provide reliability, security and predictability of energy relations
on the free market in the long term and to increase confidence and transparency
on both sides.” However, after 15 years political reasons are prevailing on issues
of a purely economic strategy. Notice that a large part of Russian federal budget
depends on revenues from oil and natural gas activities. According to the Min-
istry of Finance, one-half of the Russia’s federal budget revenue in 2013 came
from gas and oil export customs duties and mineral extraction taxes. Moreover,
energy exports play a central role in the development of Russian economy. Ac-
cording to EIA, oil and natural gas sales accounted for 68% of Russia’s total
export revenues in 2013 where 33% came from crude oil sales 21% from other
petroleum products and 14% from natural gas 2. Notice that crude oil exports
alone were greater in value than the value of all non-oil and natural gas exports.
According to Kuboniwa et al.(2005) [43] the share of oil and gas sector in Rus-
sian GDP is likely to be underestimated by the official GDP statistics due to
the prevalence of the transfer pricing.
The EU would likely prefer to maintain energy relations based on cooperation
and interdependence with its largest energy supplier. At the same time Russia is
adopting two strategies for preventing the achievement of European objectives:
1) entering into individual agreements with EU member states, with the aim of
disrupting the Community plan of a single energy policy, by leveraging on the
sovereignty of the various states in the matter of preparing the energy supply
portfolio; 2) actively participating in projects with the intent to discourage Eu-
rope to adopt programs of diversification of energy suppliers. European position
regarding Russia differs by countries5 and Russia would seem to exploit these
differences to its advantage and undermining the “European unity”. Despite the
cooperative efforts undertaken in recent years it is almost impossible to imagine
a future based on the principle of transparency and the rules of the common
market.

5For example, Finland is fully dependent on Russian gas; Spain receives none
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Figure 2: Russia gross export sales, 2013
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Source: U.S. Energy Information Administration, Russia Federal Customs Ser-
vice
Note: Natural gas includes liquefied natural gas (LNG) sales.

2.3 The gas and oil consumption in the European Union

The energy security debate in Europe today focuses mainly on gas. At present,
the old continent still bets on natural gas as the fuel of the future since “its green
properties” and the availability of the technology allowing potentially its effi-
cient use. This will probably induce the EU to grow natural gas consumption, in
the light of the European Climate Change Programme (ECCP) which consider
switching from coal to natural gas as an efficient choice to drive the EU green-
house gas (GHG) emissions reduction. According to BP Energy Outlook 2035
[14] ”LNG net imports almost triple by 2035 and account for 30% of consump-
tion in 2035 ”. Russian gas supply via pipeline is a primary source of supply,
and, according to BP Energy Outlook 2035 [14], it is expected to grow by 15%
and maintain a market share of around 31% by 2035. According to Eurogas,
as cited in Bilgin [12], natural gas consumption will be critical for the economic
future of the EU growing from 438 mtoe in 2005 to 625 mtoe in 2030. These
expectations lead the European Commission to focus most of its attention on
the gas market leaving the question of crude oil on the back burner since it can
take advantage of an international and well-functioning market. Usually, crude
oil is not part of the energy policy, although it represents still more than
one-third of the energy mix of the European Union. Problems like the
liquidity of the global oil market and the fundamental dependence of transport
on oil do not create the same worries as for gas, and it is even not addressed in
the European energy security policy. However, the question would probably de-
serve more attention. Although crude oil does not represent a strategic factor of
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the future European energy portfolio, according to recent programs, the reduc-
tion of the consumption of such commodities will be relatively slow. According
to BP Energy Outlook 2035 [14] in 2035 it is expected that oil and gas each will
account for 29% of consumption followed by renewable which overtakes coal.

3 Russian Supply

3.1 Russian Federation as a World Energy Supplier

The huge Russian energy production capacity has been one of the primary levers
that allowed Russia to increase its economic power and political stability. Russia
has been and continues to be one of the most influential global energy suppliers
in almost all energy sectors. According to the latest EIA’s International Energy
Statistics [24] Russia is the world’s top crude oil (including lease condensate)
producer with average liquids production of 10.551 million barrels per day (b/d)
in 2016. It is also the third top world producer of petroleum and other liquids
(after the United States and Saudi Arabia) with average liquids production of
11.240 million barrels per day (b/d) in 2016. Russia also produces significant
amounts of primary coal and nuclear power making it be the sixth-largest major
coal producer behind China, United States, India, Australia, and Indonesia with
393 million short tons in 2014 and the third-largest producer of nuclear power in
the world in 2014. It is no coincidence that the top 4 products exported in 2014
by Russia are energy products: Petroleum (35%), Refined Petroleum (22%),
Petroleum Gas (7%), Coal Briquettes (3.0%) (see The Atlas online6). Russia
is not only a great producer but also a natural reserve of energy products for
refining, owning in June 2016: 17,3 percent of world’s total natural gas reserves,
17,6 percent of coal, and 6 percent of oil according to BP world statistics [15].
This enviable position has made this nation self-sufficient in fuels and power
generation and a major exporter of energy products in the world. The latest
energy plans announced by the Russian government are trying to push forward
and reform the entire production industry, inducing the gradual replacement of
exporting raw products with refined products to retain in the country all of the
potential value added. The geographical position of Russia, in particular, the
proximity to the Caspian Sea and Central Asian, allows for new business deals
making Russia a key nation for energy production but also for the transit of the
energetic products. Russia has been supplying about a third of Europe’s oil and
natural gas consumption, but, at the same time, it is also starting to export
more to the energy-hungry East Asian markets. As if is not enough, Russia
has not only vast proven reserves, but it is very likely that it also owns large
deposits not yet counted in the regions to the East Siberia. According to the
Oil and Gas Journal [22] (as cited in EIA 2016 [24]), Russia possess 80 billion
barrels of proved oil reserves, which includes the brand new deposits in western
Siberia province. Although most of Russia’s oil production originates in West
Siberia and the Urals-Volga regions, it is very likely that the production from
East Siberia, Russia’s Far East and the Russian Arctic will grow in the future.

6”The Atlas of Economic Complexity,” Center for International Development at Harvard
University, http://www.atlas.cid.harvard.edu
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Figure 3: Crude oil and condensate exports by destination in 2014

Thousand barrels per day.
Source: EIA 2015

3.2 Russian Oil Export Supply

According to U.S. Energy Information Administration (EIA), Russian crude
oil exports including lease condensate scored a relevant increase of 96.7% from
2648,36 thousand barrels per day in 1999 to 5211.14 thousand barrels per day
in 2004. After this period a slight and persistent downward trend arose.
Revenues from oil exports are a primary source for both the Russian economy
and government. They account for more than 68% of the value of total exports,
based on information provided by Russia’s Federal Customs Service. Mineral
extraction taxes and export customs duties on oil and natural gas are responsible
for about one-half of Russia’s federal budget revenue in 2013 according to the
Ministry of Finance. Additionally, crude oil exports alone were greater in value
than the value of all non-oil and natural gas exports and produced value four
times higher respect to natural gas. Europe has confirmed to be the primary
destination of the exported flows with, in particular, 72% of the crude headed
to Germany, Netherlands, Belarus, and Poland. However, the most recent data
leave suspect of a sudden change of direction since Russian government is letting
grow its ties in the east. Asia accounted for 26% of Russian crude exports in
2014, with China and Japan accounting for a growing share of total Russian
exports. In May 2015 Russia become China’s largest supplier of crude oil for
the first time. Exports to China have more than doubled since 2010. According
to Eastern Bloc Research other oil products are delivered with lower volumes
in 2014, about 960,000 b/d of diesel and 1.6 million b/d of fuel oil, 100,000 b/d
of gasoline and 60,000 b/d liquefied petroleum gas during the same year.
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3.3 Relevant Factors Affecting Russian Oil Export Supply

3.3.1 Russian Oil Production

According to EIA, in 2014 Russia ranked third in the world for oil production,
after Saudi Arabia and the United States, and first for crude oil supplies to Eu-
rope. In 2014 Russia produced an estimated 10.72 million b/d of petroleum and
other liquids (of which almost 94% were crude oil including lease condensate)2.
The production of crude oil of the modern Russian state is constantly growing
since 1998 when production reached the level of 5.854 thousand barrels per day.
During the period between 2000 and 2004, there was a relatively fast increase
in productivity with the average rate of annual growth exceeded 7.5% per year
and peaks of 9.8% in 2003 and 8.3% in 2004. However, from 2004, the speed
of production growth has suffered a contraction with the annual growth slowed
down to 2.7% in 2005, 2.2% in 2006 and 2% in 2007. From 2010 to 2014 the
annual growth has reached the average level of 1.2%. It is likely that the decel-
eration was actually due to the hike in crude oil price that has discouraged large
Russian companies to produce more given the wide profit margins. According
to EIA, the annual average price of Russian crude oil rose gradually from $34.52
per barrel in 2004 to $94.77/barrel in 2008. In the background, this was also
made possible thanks to the limited participation of foreign investors, due to
government restrictions imposed to the cooperation in projects for developing
national strategic oilfields. Usually, governments seek foreign investments, but
Russian government wanted to protect the oil sector from outside influences es-
pecially during a period, characterised by high oil prices, when usually the big
oil companies prefer to launch long-term programs.

3.3.2 Oil Transfer

Russian crude oil is roughly entirely transferred via pipelines. However, there
are also alternative rail and sea routes available for reaching bordering coun-
tries or ports for exports. Transneft is the leader company in the sector with
largest Russian pipeline network. Only small volumes of exports are shipped
via rail and on vessels that load at independently-owned terminals. Russia uses
three main channels of distribution of petroleum products headed to the West:
Druzhba, which conveys oil to the Europe, Baltic Pipeline System 1 and Baltic
Pipeline System 2, which have a strategic role of diversification of routes to re-
duce the degree of dependence on Druzhba pipeline route (Black Sea pipeline).
All of these oil pipeline network exceptions of the Tengiz-Novorossiisk are under
the control of the state owned Transneft company(IEA, 2010). Not very long
time ago Russian government promoted new projects of construction of new oil
pipelines intending to diversify the destination of petroleum products destined
for export. The new routes pointing to the east (US, China and Japan) are:
the Trans Sakhalin pipeline, Purpe-Samotlor Pipeline and the Eastern Siberia-
Pacific Ocean (ESPO) Pipeline. EIA estimates that ESPO will have a capacity
of 2.6 million b/d by 2020. The opening of this channel and the design and
construction of new pipelines to the east is interpreted by many analysts as the
choice of Russia to give priority, in the near future, to the supply of the Eastern
countries rather than the western ones. New projects are pushing Russia to tie
agreements with new Asian superpowers like China and India.
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3.3.3 Russia’s oil grades

Russia has several oil grades, Urals, Siberian Light, Sokol, Sakhalin (Ex Vityaz),
REBCO and ESPO. The largest share of export contracts concerns the Urals
blend oil supplied through the Baku-Novorossiysk pipeline and the Druzhba
pipeline system. Urals blend consists of a mix of heavy sour crude from the
Urals-Volga region and light sweet crude from West Siberia (Siberian Light
crude). Markets consider this blend to be of inferior quality compared to the
most famous Brent, for which it is underpriced with a spread. Siberian Light
crude is a higher quality brand and thus more profitable when marketed on its
own. However, the lack of adequate infrastructure makes full exploitation of this
resource impossible at present and then it continues to be exported mainly by
mixing it into the Urals blend. Other valuable oil grades are Sokol and Vityaz
blend grade: the first is a light, sweet crude with an API gravity of 35.5◦ and
0.30% sulphur content according to ExxonMobil. According to Heinrich [30],
Vityaz was a light (34.6◦ API), sweet (0.22% sulphur content), crude.
In 2014, Vityaz blend was replaced with a new grade of crude called Sakhalin
blend which is loaded at the Prigorodnoye port, on the southern tip of Sakhalin
Island. This oil grade is now delivered to Asian nations like: Japan, South
Korea, Singapore and Indonesia. The Eastern Siberia-Pacific Ocean (ESPO)
blend is a new mix of crude produced in several Siberian fields. The streaming
began in December 2009 out of the Russian Eastern port of Kozmino, near
Vladivostok. Since December 2009, this crude has been delivered both to Asia
and the US. According to PLATTS [55], ESPO blend is a sweet, medium-light
blend, with a gravity of 34.7◦API and 0.535% sulphur content. The grade is
exported to Asian countries like China through the recently constructed ESPO
Pipeline or the Pacific coast port of Kozmino.

3.3.4 Taxation

Russia enforces two forms of peculiar taxation on crude oil: the minerals ex-
traction tax (royalty) and the export tax. Crude oil boasts a special export tax
regime if compared to other products. In fact, export tax on raw crude oil was
being set up higher than other products to stimulate investment in refining ca-
pacity. Regarding minerals extraction tax, a form of facilities (or tax holidays)
is being provided to encourage the extraction of the so-called difficult-to-develop
resources. However, adjustments are frequently made by the government. For
example, the last rebalancing between oil regimes, on January 1, 2015, when
Russian government decided to raise the extraction tax and lower the export
tax as a compensation for the increase in oil extraction. The taxation system
remains one of the objectives of the government that imagines spurring devel-
opment of difficult-to-develop resources despite the production at fields, set up
mainly during the Soviet era, is falling down. As reported by Bloomberg in
an article at the end of Agust 2015 [48]: ”Russia may lose about 100 million
metric tons of output in 10 years at its key West Siberia fields, Energy Minister
Alexander Novak said in June”. That’s the reason why recently the Finance
Ministry proposed reducing the reliance of taxes on duties tied to crude produc-
tion with a new levy on earnings which should introduce a charge of 70 percent
on profit from oil projects and would keep Russia’s export tax. According to
Ernst & Young The new tax system would start to be tested realistically not

12



earlier than 2017, and it would reduce the burden of the tax on the price of
crude oil from 53% to 30% at the price of $45 per barrel.

3.4 Energy Strategy of Russia for the Period up to 2030

The Russian government in 2009 announced the launch of a long run strategic
twenty-years energy program. The stated goal of the new strategy is to pro-
mote sustainable economic growth by exploiting the energy sector according to
a principle of maximum efficiency. This program was launched to integrate and
modify a previously carried out program of 2003. Three is the number of pillars
on which the program rests: 1) the state is committed to conducting persistent
activities in order to direct the development of key projects in the energy sector;
2) to create companies that simultaneously operate in the domestic market and
the overseas market, representing Russia; 3) to support, through appropriate
measures, companies that promote investment initiatives in areas where they
can achieve objectives aligned with the state interests.
The Russian government has set precise production targets: 1) Crude oil pro-
duction will rise close to the technical-economical upper limit and at the same
time 2) The industry will contribute to state revenues and export income; 3)
Russian government decided to promote and diversify the export destinations
by the development of crude oil export pipelines and oil-shipping ports. Pri-
ority projects are the following crude oil pipelines: “Construction of the Bur-
gas–Alexandroupolis crude oil pipeline,” “the second-phase Baltic pipeline sys-
tem” - Petroleum products pipelines: “Cebep (north),” “Iot (south)” - Crude-
shipping ports: “Primorsk,” “Ust-Luga,” “Nakhodka”.
Russia’s total annual crude oil production is projected to increase up to 525
million tons by 2022 and up to 535 million tons by 2030. Major crude oil pro-
ducing regions in Russia Western Siberia, Volga and Ural are expected to see the
gradual and ongoing reduction in production. Planned productions in Eastern
Siberia and the Far East are believed to can gradually replace the running out
productions up to became the major oil production regions. However, to achieve
the goal, massive investments in oil exploration and development projects will
be needed, and Arctic offshore and shale resources are unlikely to be developed
without the help of Western oil companies.
In the future, the Russian oil sector will assume most of the value added through
the transportation of crude oil, and production and exports of high-value petro-
chemical and energy products thanks to a programmed technologically innova-
tive revitalization of the oil sector. The Russian government plans to promote
the gradual reduction in exports of crude oil, but at the same time, it will in-
crease the export of petroleum products to hold back value added benefit of
such productions to the economy. Internally the industry will stably, sustain-
ably and efficiently satisfy Russia’s domestic demand for crude oil and petroleum
products.

3.4.1 Effect of recent sanctions and prices on Russian strategy

Recently, in order to attract sufficient capital to develop the twenty-years pro-
gram successfully, the Russian government has approved some fiscal measures
aimed at attracting foreign capital by offering a special tax rate to compa-
nies that invest in the Arctic offshore and low-permeability reservoirs, including
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shale reservoirs. Many firms have already signalled their interest in the past,
and several Western companies have entered a partnership with Russian com-
panies, attracted especially by prospective of a large gain. According to EIA
[23], Rosneft has signed agreements with ExxonMobil, Eni, Statoil, and China
National Petroleum Company (CNPC) to explore the Arctic fields, LUKoil has
signed agreements with Total to explore shale resources. Moreover, Shell, BP,
and Statoil also signed agreements with Russian companies to explore shale re-
sources. However, it is unlikely that these programs will be implemented or at
least they will not be scaled down.
The reasons for this view reside in two unexpected events: 1) the sanctions im-
posed by Western nations on Russia in response to the actions and policies of
the government of Russia concerning the Ukraine; 2) oil prices fell by more than
half, from March 2014 to January 2015. The expected effect will be a reduced
propensity to create new contracts to finance expensive new projects like deep-
water, Arctic offshore and shale projects. Regarding the still open contracts,
it does not seem that sanctions have discouraged enough Western companies
to conclude the business and they continue to seem interested in the potential
profit of such contracts.

4 Import Demand for Crude Oil in Europe

Over the years, Russia and other former Soviet Union countries (FSU7 ) have
succeeded in acquiring a very significant weight in supplying energy commodities
to Europe. Looking at the chart 4 you can see that the market for imports of
crude oil is firmly under the control of those nations.
To understand what are the drivers of the European demand for crude oil on
the foreign countries, we need to analyse what are the relevant factors that in
general determines the demand in crude oil markets.

4.1 Spatial dimension of crude oil demand

Not all crude oil types are alike, factors such as the quality of crude oil, trans-
portation costs, insurance costs, political and macroeconomic factors affect the
relative costs of supply differently among different possible alternatives.
Probably some of the factors that more than others are determinant for the total
refining costs of crude oil are the geographical position of the points of extrac-
tion and the relative position of the points of refining. The different qualities of
crude oil available on the market, the transport costs and the related insurance
costs and taxes depend mainly on the place of extraction and the local policy
of the on-site distribution companies and governments.
For several decades oil was classified by the location of extraction. Obviously,
physical distances are not a sufficient indicator to measure the real distances
between the location of extraction and production. Real distances depend on
the efficiency and effectiveness of the infrastructures located in the territories
(transports and inventory capacity). There are four main modes of transporta-
tion of crude oil: pipeline, rail, truck, ship. Each of these has advantages and

7The FSU countries are: Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan,
Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan.
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Figure 4: Market shares of crude oil imports in Europe

Source: based on Eurostat data

disadvantages affecting the actual distance between the producer and the ex-
tractor.
Pipelines are the most efficient and commonly used form of oil transportation.
It permits to link altogether, with a small impact on greenhouse gas (GHG)
emissions, the wellhead to gathering, processing facilities, refineries and tanker
loading facilities. Another important factor is the national geopolitical strategy.
It’s worth remembering that the geographical distances do not matter when po-
litical reasons affect the terms of trade, as it happens whenever an embargo is
imposed. The direction and the intensity of the crude oil import-export flow
follow uneven relations of power, such as those connecting the EU to the rest of
the world. Remember for instance the effect, on European oil import strategy,
of the 1973 OPEC oil export embargo endorsed by many of the major Arab
oil-producing states, in response to Western support of Israel during the Yom
Kippur War. In that occasion, Europe intensified oil trade with the USSR and
reduced the supplies from OPEC countries.

4.2 Quality dimension of demand

The oil industry classified crude oil into different types in order to measure the
physical characteristics of the traded oil. For physical characteristics, we mean
all the features that influence the production costs of every manufactured prod-
uct derived from petroleum. This specification allows defining more precisely
the intrinsic value of the oil to be processed. The lower are the costs of refin-
ing required for processing the oil the higher is its value. The market typically
differentiates oil types by their densities (measured as API gravity) and their
sulphur content. The density of oil is determined by the length of the hydrocar-
bons it contains. If the raw petroleum is of a high density the lower is the API
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Figure 5: Map of the import possibilities

Source: Steve Cooper - Wood Mackenzie 2013

of crude oil (heavier crude oil). Sulphur is an undesirable characteristic of oil
products. Types of crude oil containing high levels of sulphur are termed ”sour”,
if they have relatively low levels of sulphur they are classified ”sweet”. Usually,
oil blends are classified into four categories to refiners worldwide: light-sweet
(30-40 API, < 0.5 wt% S); light-sour (30-40 API, 0.5-1.5 wt% S ); heavysour
( 15-30 API, 1.5-3.1 wt% S) and extra-heavy (< 15 API and > 3 wt% S ).
Refiners are generally willing to pay more for light, low sulphur crude oil. In
that regard, Europe has potentially considerable flexibility over the selection of
the quality since it is well-positioned to import crude from a huge number of
different regions (see figure 5).
The high complexity of the refineries let Europe demand a mixed crude slate8.
In fact, the industry of European refineries is not bounded by a limited upgrad-
ing capacity. Rather, a reduction of the overcapacity along with an increase in
the demand for lighter crude oil supply, are likely to happen in the next future.
The small net cash margins, due to the world’s highest operating costs charged
(see Lukach et al. (2015) [45]), are imposing the rationalisation of the produc-
tion with the aim of the international competitiveness. Therefore, a reduction in
crude oil supplied by Russia of any given quality would be potentially expected
to result in the substitution by amounts of a better or equivalent quality from
alternative attainable regions (see figure 5) ensuring falling operating costs.
According to Wood Mackenzie European crude demand will fall in the near-
term and they predict crude slate will get sweeter and slightly heavier. In the
long term, the decline of domestic and Russian crude should be compensated
by increased Caspian, Middle East and America imports.

8Crude slate stands for the choice of crude oil used by refineries
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4.3 Other dimensions of the demand

Several additional factors could also play a very relevant role. Some of them
are: 1) European emphasis upon energy efficiency will likely influence future en-
ergy demand developments in the long run. For example, the European Union’s
(EU) biofuels target of 10% of energy content by 2020 in road transportation; 2)
growing production in some regions could have an impact on the trade flows and
storage in Europe; 3) political factors like wars can change the relative conve-
nience between alternative supply areas; 4) macroeconomic factors, as economic
growth, may result in a change in expected consumption that inevitably affects
the business plans of refineries.

4.4 The effect of Russian Energy strategy on Eu crude oil
demand

The expected reduction in exports of crude oil from Russia is not necessarily
sufficient to compromise Europe’s security of supply. The oil market could be big
enough for substituting Russian oil with other sources. The European demand
can absorb large volumes of crude qualitatively similar to Russia’s Urals Blend.
However, not all the potential suppliers can provide such type of crude oil. The
European refinery companies were in big trouble in the last decade, and they are
still continuing to be in the troubles today opting, most of the time, for reducing
their exposure in the refining business. A cheap, high-quality crude oil supply
would allow them to get higher value added. However, several factors, such as
those mentioned above, like transport costs, taxes, etc. can heavily affect the
demand. The search for an alternative to Russian oil, in the medium and long
run, can not leave aside from the consideration of such factors. According to IEA
a lower economic growth, a higher vehicle efficiency and the substitution of oil in
transport with biofuels and natural gas will probably drop the demand for crude
oil in Europe in a long-term decline. The surplus of capacity and weak refining
margins of the European oil refining companies is one of the primary signals of
the expected structural falling demand and a growing international competition
of the Asia, Middle East and the USA. The long-term plans of the European
refinery sector tend mainly to reduce the throughput volumes which will make
even more complicated the search for an alternative commercial partner that
should offset the falling Russian export that, according to the Energy Outlook of
the Russian Academy of Sciences, will fall by almost half by 2040. However, the
reduction in exports of some fuels to Europe is partially due to the willingness
to anticipate the change in oil demand and the subsequent substitution effect
between different petroleum products exported in Europe. For example, fuel oil
is expected to be replaced by other fuels in the long-run. At present more than
half of the cars in Europe are diesel-powered cars as a result of fiscal incentives.
Therefore Russia is shifting towards exporting more diesel and jet fuel rather
than fuel oil which is, at present, predominantly exported in Europe.

4.5 Petroleum Refinery Sector

From 2007, Europe is suffering from a severe crisis in the oil refining sector due
to poor production margins that companies can generate, despite their great
versatility. The awkward moment has often led several companies to sell their
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plants or, alternatively, to convert them into terminals, thereby taking their
capacity off the market forever. Two were the triggers, sliding demand amid a
lingering economic recession and the resulting over-capacity. US, Middle East,
India, and Russia can readily supply of gasoline, gas oil-diesel, jet kerosene, and
all other hydrocarbon products at lower costs. Another important factor is the
lower oil prices available on the international markets that are leading to sharp
falls in European upstream investment. At the same time in Eastern Europe,
Russian oil producers like Gazprom Neft announced plans to invest billions to
upgrade refinery plants, with new advanced technologies, in order to produce
better grades of products, increase the oil conversion rate, enhance energy effi-
ciency. As a result, oil demand in Europe, already reached its lowest since at
least 1995 and probably to the early 1990s, in a relatively short time, and is
expected to fall further, pulled down by a bleak economic outlook.
Crude cost is the single most important determinant of the profitability of an
oil company. With crude costs accounting for around 80% of the refinery expen-
ditures, processing cheaper crude can have a very positive impact on refinery
margins

5 Can Europe survive without Russian crude
oil?

European demand reduction and simultaneous increase in Asian demand appear
to be a sufficient evidence to persuade Russia to reverse course in export.
This turnabout involves for Europe an intrinsic geopolitical risk for three main
reasons: 1) as a decline in production is inevitable and even though gas con-
sumption is increasing at a very high rate, it is expected that oil products will
presumably still remain the energy products with the highest demand for a long
time; 2) the most profitable Asian trade, once intensified, could induce Russia
to cut supplies to Europe at a rate higher than they would actually be able
to bear; 3) geopolitical tensions between NATO countries and Russia suggest
an embargo as a possible scenario which can be extensible to the former Soviet
Union (FSU) nations which are still partially under the sphere of influence of
Russia (consider that part of them belong to the Eurasian Economic Union).
For these reasons it is necessary to check where the market, given the fragile
situation of the European refining oil sector, may direct their demand in the
absence of Russian supply.
Replacing 4800 thousand barrels per day of crude oil and lease imports from
Russia in the short run could be a significant challenge, for European countries.
To answer the original question we need to choose: a) a measure of the degree of
substitution between crude oil supply of the former Soviet Union (FSU) coun-
tries and the others available on the international markets; b) a dataset; c) a
theoretical approach for the estimate.

5.1 Methodology

5.1.1 The choice of the measure of substitutability

To find the most appropriate measure to be taken in this study, I will make a
brief introduction of the principal measures of elasticity to allow a comparison.
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Hicks was the first describing the concept of substitutability, often called the
elasticity of substitution, in 1932 [32]. A number of other measures that gen-
eralizes the concept were provided years later (see Allen and Hicks (1934)[33],
Allen (1938)[1], Uzawa (1962)[63], McFadden (1963)[49], Morishima (1967)[51],
Blackorby and Russell (1989)[13]).
The original Hicks work, assumed two inputs, capital x1 and labor x2 and cal-
culated the relative change in the input proportion x1/x2 due to the relative
change in the marginal rate of technical substitution fx2

/fx1
while output Y

was held constant.

σ =
dLN

(
x1

x2

)
dLN

(
fx2

fx1

)
However this measure is suitable for the analysis of only two factors being the
marginal rate of technical substitution fx2

/fx1
not determined uniquely other-

wise.
In 1989 Blackorby and Russell [13]demonstrated, under the assumptions of per-
fect competition and profit maximization, the ratio fx2/fx1 equals relative factor
prices p2/p1 and exploited this finding for building a new elasticity measure they
called Hicks’ elasticity of substitution (HES)

HES =
dLN
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x2

)
dLN
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p2
p1

)
Others elasticity measures in a multifactor setting were built on the base of this
definition.
One of the goals was to isolate the degree of elasticity between two goods among
all those available on the market. The Hicks-Allen elasticity of substitution
(HAES) is usually termed a measure of relative substitutability and it is based
on the assumption that all inputs being flexible and cost minimised for fixed
output

HAESij =
∂LN

(
xi

xj

)
∂LN

(
pj
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)
Another popular measure of input substitution is the Allen partial elasticity of
substitution (AES), introduced by Allen (1938). From Uzawa (1962)[63], the
AES between two inputs, for a twice-differentiable cost function (TC) can be
calculated by

AESij =
ηij
Sj

where Sj = xj · pj/C denotes the cost share of factor j while ηij is a measure
of absolute substitutability also called the cross-price elasticity

ηij =
∂LN (xi)

∂LN (pj)
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this measure widely used in most of the empirical studies does not represent the
degree of elasticity in the Hicksian sense as it does not provide any additional
information respect to the cross elasticity, being it proportional to this value.
Blackorby and Russell (1989) [13]show that the AES does not measure the ease
of substitution. Moreover, the measure is not appropriate for input with a small
cost share.
In 1989 the same two authors proposed an alternative measure, they called
the Morishima Elasticity of Substitution (MES), that measures the change in
relative factors for a change in the price level of one factor. This measure can
be expressed in terms of measures cross-price elasticity and own-price-elasticity.

MESij =
∂LN

(
xi

xj

)
∂LN (pj)

=
∂LN (xi)

∂LN (pj)
− ∂LN (xj)

∂LN (pj)
= ηij − ηjj

Alternatively, MES can be interpreted as the ratio of the relative change in the
ratio of input i to input j to the relative change in the price of input j, for an
infinitesimal change of that price.
In my study, I need a measure that let us get to know what is the expected
substitution effect of the European aggregate demand, for crude oil imported
from former Soviet Union (FSU) countries. We are solely interested in factors
influencing the decisions of European refineries and oil producers of the former
Soviet Union (FSU) area. Accordingly, we decide to perform the analysis letting
one country price be constant to a variation of FSU crude oil price, to exclude
the direct influence of this change in price in the other market. For that reason,
a two-factor-one-price elasticity, where solely the price of factor j is flexible with
all other prices being fixed, should be the more appropriate measure to employ
in the analysis.

5.1.2 European production function

We will try to select a functional form of the production function observing
several restrictions on the supply and demand functions, implied by economic
theory, but letting it be sufficiently flexible to fit the data in the empirical
analysis. Therefore elasticities of supply and demand will be not arbitrarily
restricted by the only choice of the functional form.

5.1.3 The required data

We consider in the analysis a representative European refinery firm. We suppose
that this firm takes the price as given and does not expect its output decisions
to affect oil prices. If the market price changes, then the firm reassess its pro-
duction decision. This model is built on the following five assumptions:
1. the European buyer acts as a price taker, meaning that the buyer decisions
has no impact on the price charged for the crude oil. The buyer decides the
amount to purchase that minimizes it’s production costs taking the prices as
given;
2. the market consists of many sellers. We will not assume anything about
the sellers, meaning that the seller does not necessarily takes the price as given.
Notice that this assumption does not violate the idea that that oil market prices
are governed by an oligopoly, which usually is commonly supposed to be right;

20



3. we need to assume that the buyer does not care which seller provide the oil if
all sellers charge the same price. Meaning that every crude oil sold by all sellers
in the market is assumed to be homogeneous;
4. perfect information.
It is worth to be concerned about the assumption 3, among all the assumptions,
since, as we already saw, that crude oil provided by a group of producers is usu-
ally qualitatively heterogeneous due to several factors like chemical properties
or transports costs. However a way for ridding off all the heterogeneity, oth-
erwise without our control, is to exploit the CIf prices9 of the imported crude
oil volumes. There are mainly two reasons: 1) in a deficit market, like the
European one, the price of crude oil is primarily CIF, because a huge share of
crude has to be transported; 2) the crude oil price has been set such that the
CIF prices for different crude, from different parts of the world but of the same
quality and quantity, equate when delivered to the same refinery. Consider the
example of JP Favennec & R Baker (2001) [25] ”A Rotterdam refinery, able to
buy Brent crude oil at $18/bbl FOB Sullom Voe (the Brent loading terminal in
the Shetland Islands), will incur a freight cost of $0.40/bbl. For crude oil of the
same quality, the refinery could pay a delivered cost at Rotterdam not exceeding
$18 + 0.40/bbl, with no loss of profit. So, if an equivalent crude oil is avail-
able in West Africa and the freight rate from the loading port is $0.80/bbl, to
be competitive the FOB price for the West African crude must be 18.40− 0.80,
i.e. $17.60/bbl. This basic model applies everywhere, but it cannot be perfectly
applied. There can be discounts as well as premiums against the delivered CIF
price for a large number of reasons. Refiners must also pay port (harbour) dues
which can vary enormously between countries and from port to port”. Therefore
in order to consider in the analysis most of the factors that affect trades, we
prefer to employ CIF prices by country of origin.

6 Theoretical approach

6.1 Literature on interfuel substitution

According to Behar Stevens. (2009) [8] the oil price shocks in the 1970s spurred
many studies on the elasticity of substitution between energy and other inputs
in production. A big debate raised on the substitutability (or not) between
energy and capital and on the difference between energy and different types of
producing inputs. Over the years, the issue has attracted the attention of many
researchers of the time whose works were based mainly on Diewert’s (1971) [21]
paper. Among the most relevant empirical energy demand analysis there are
Berndt and Wood (1975) [11], Fuss (1977) [27], and Pindyck (1979) [54].
Those papers derive cost share (or input-output) equations applying Shephard’s
lemma and estimate the parameters with an econometric model, using relevant
data and producing inferences about the demand for fuels. Berndt and Wood
(1975) [11] were the first to estimate the elasticities of substitution with energy
in a production function. The early studies by Hudson and Jorgenson (1974)
[36],Berndt and Wood (1975)[11], Fuss (1977) [27] and Magnus (1979) [46]fo-
cused the attention on the degree of substitutability among production inputs

9CIF (cost, insurance and freight) price is the price for a crude oil cargo delivered to the
discharge port
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like capital, labour, materials and energy. They mainly found the same result
of substitutability between energy and labour, but complementarity between
energy and capital. Apostolakis (1990) [2] and Bacon (1992) [4] provided some
surveys of the early studies of interfuel substitution elasticities in the OECD
countries. Fuss(1977) [27] worked also on the substitutability among different
energy inputs. He found evidence of substitutability for oil, gas, and coal, and
no evidence between each of these energy inputs and electricity. Further studies
obtained mixed results, see Uri (1979) [62], Considine (1989) [19], Hall (1986)
[28]. However as Serletis (2015) [59] said, ”the major contributions in this area
are quite outdated by now, since their data incorporate observations before the
1970s...”
Research in this area focused on two different methodological directions to the
investigation of interfuel substitution (energy elasticities) and the demand for
energy. With the first direction one estimates long-run and short-run demand
elasticities using respectively cointegration techniques and error-correction mod-
els, see Bentzen and Engsted (1993) [10]and Hunt and Manning (1989) [37].
Although the technique deals with econometric regularity issues has not a proper
microeconomic foundation.
The second direction, developed by Diewert (1974) [21], requires both a differ-
entiable form for the cost function, and the application of Shephard’s (1953)
[56] lemma to derive a demand system generation. Other relevant studies in-
vestigating interfuel substitution and the demand for energy are: Jones (1995)
[39], Serletis and Shahmoradi (2008) [58], and Serletis et al. (2009), Serletis
et.al.(2010) [59].
The majority of the works are based on locally flexible functional forms and, in
particular, the translog, introduced by Christensen et al. (1975) [16] See, for ex-
ample, Fuss (1977) [27] , Pindyck (1979) [54], Jones (1995) [39], and Urga and
Walters (2003) [61], Serletis and Shahmoradi (2008) [58], Serletis et.al.(2010)
[59].

6.2 Empirical specification

Following Fuss (1977)[27] and Serletis (2010) [59], it is assumed a neoclassical
model of the aggregate production function of the EU industry with a KLEM
production structure and a number m of energy inputs

y = f(K,L,E1, E2, ..., Eo, ..., Em,M)

and the vector of factor prices p

p = (PK , PL, PE1
, PE2

, ..., PEo
, ..., PEm

, PM )

where Y is EU gross output, Ek for k = 1, ...,m are m energy inputs (o means
crude oil input), L is labor input, M materials, K capital input.
We state the assumption of homothetic weak separability of the production
function in the k energy sources10 and of exogeneity of the factor prices p and
the output level y ( Shephard, 1953 [56])

10 We impose the homothetic weak separability assumption because we suppose that the
decisions concerning the quantity of imported crude oil are determined before those concern-
ing the other quantities. Consequently we can introduce an underlying two-stage budgeting
optimization process, see Appendix C. In order to use this optimization process we need to
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y = f [K,L,E1, E2, ..., Eo(Eo1, Eo2, ..., Eon), ..., Em,M ]

where {Eoi}i=1,...,n is the set of crude oil import demands by i-th country of
origin.
Under regularity conditions (see Appendix A and B) and using the described
production function, Shephard (1953)[56] showed that, for the duality theory,
the cost function corresponding to the homothetically weakly separable produc-
tion function is weakly separable as well. Consequently the marginal rate of
substitution between any two components Eok,Eoj with k 6= j of Eo does not
depend upon the value of all the other factors K,L,E1, E2, ..., Em,M , see ap-
pendix C and D.
In order to study the elasticity of substitution among crude oil imports demands
by country of origin Eo1, Eo2, ..., Eon, given the price vector π = (PEo1 , PEo2 , ..., PEon)
and the input vector z = (Eo1, Eo2, ..., Eon) on the base of the assumption of
homothetic weak separability, we can shrink11 our attention just only on the
aggregate cost function CEo

(π, y) ( see appendix D) .

CEo = C(π, y) = minzi≥0{π′z|f(x, t) ≥ y}

Under the hypothesis of a linear homogeneous production function in inputs it
is possible to demonstrate that CEo

(π, y) = y ·CEo
(π), where CEo

(π) is an unit
cost function (see appendix F).
In the next chapter I impose a specific functional form to CEo(π).

6.3 CES production function and the translog energy ag-
gregate cost function

The next steps require the specification of the functional form of the unitary
cost function for the aggregate imported crude oil CEo . The goal is to calculate
constant substitution effects, meaning that a cost function with a constant elas-
ticity of substitution and a (CES) production function must be employed. A
formal specification of a CES production function with two inputs was developed
by Arrow et al.(1961) [3]

y = γ
(
δx−ρ1 + (1− δ)x−ρ2

)−ν
ρ

where y is the output quantity, x1 and x2 are the input quantities and ρ, γ, δ
and ν are parameters. To extend the CES class function to n input factors, we
consider, is in the class of nested CES function. The functional specification of
the n-input CES function is

y = γ

(
n∑
i=1

δixi

)−ν
ρ

assume that firms decide the foreign supplies before considering quantities of the other energy
and non-energy inputs. See (Pindyck (1979) [54] Mountain Hsiao (1989) [35]; Kemfert Welsch
(2000)[40] ; Klepper Peterson (2006) [41]).

11The homothetic separability let us investigate the substitution possibilities among crude
oil supplies without concerning at the substitution possibilities among those crude oil supplies
and the other commodities
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As the non-linearity of the CES function does not permit linearization analyt-
ically, it is frequently approximated by the so-called ”Kmenta approximation”
(see Kmenta (1967) [42]), which can be calculated by linear estimation tech-
niques. Alternatively, it can be implemented a non-linear least-squares using
various optimisation algorithms. Hoff (2004) [34]showed that a correctly speci-
fied extension to the n-input case requires non-linear parameters restrictions on
a translog function. Hence, there is a quite limited benefit in using the Kmenta
approximation in the n-input case.
In this paper, and in order to be consistent with the existing empirical litera-
ture, I’m going to employ a translog cost function to investigate energy demand
issues and oil suppliers substitution as in Serletis et.al.(2010) [59].

LN(CEo
) = LN(α0) +

n∑
i=1

βiLN(PEoi
) +

1

2

n∑
i=1

n∑
j=1

γijLN(PEoi
)LN(PEoj

)

where i, j are individual energy types, and PEoi
is the price of crude oil imported

from country i.
Under regularity conditions (see appendix B), some parameter restrictions are
imposed in order to satisfy the assumption of homogeneity of degree one in
prices of the cost function.

n∑
i=1

βi = 1

n∑
i=1

γij =

n∑
i=1

γji = 0,∀j = 1, ..., n

6.4 The Cost Share Equations

The n cost share equations for the individual energy types {SEOi
}i=1,...,n, can

be obtained in terms of shares of the i-th supply cost PEoi
·Eoi in the aggregated

cost of the crude oil imports, CEo
, by differentiating the log of the cost function

with respect to the log of the price of input i and using Shephard’s Lemma, on
CEo ,

∂LN(CEo
)

∂LN(PEoi)
=
PEoi

CEo

Eoi = SEOi
, i = 1, . . . , n

see appendix E.
We can now calculate the share equation by differentiating the translog cost
function

SEOi
=
∂LN(CEo

)

∂LN(PEoi
)

= βi +

n∑
j=1

γijLN(PEoj
), j = 1, . . . , n

The resulting cost share equations 1 2 3 5 can then be used to investigate
the demand for individual oil import supplier, Eo1, ..., Eon and to estimate the
structure of substitution among the different import oil suppliers.
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The analysis has been developed considering data aggregated by regions as fol-
lows:12:

• Af : Africa

• F : Former Soviet Union Countries

• E : Europe

• Am: America

• Me: Middle East

SAf = βAf + γAfAfLN(PAf ) + γAfFLN(PF ) + γAfELN(PE) + γAfAmLN(PAm) + γAfMeln(PMe) (1)

SF = βF + γFAfLN(PAf ) + γFFLN(PF ) + γFELN(PE) + γFAmLN(PAm) + γFMeLN(PMe) (2)

SE = βE + γEAfLN(PAf ) + γEFLN(PF ) + γEELN(PE) + γEAmLN(PAm) + γEMeLN(PMe) (3)

SAm = βAm + γAmAfLN(PAf ) + γAmFLN(PF ) + γAmELN(PE) + γAmAmLN(PAm) + γAmMeLN(PMe) (4)

SMe = βMe + γMeAfLN(PAf ) + γMeFLN(PF ) + γMeELN(PE) + γMeAmLN(PAm) + γMeMeLN(PMe) (5)

7 Parameter estimation and data

Notice that we have 30 parameters, 6 in each of the five share equations.
The imposition, however, of the ten symmetry restrictions
γFAf = γAfF , γEAf = γAfE , γAmAf = γAfAm, γMeAf = γMeAm, γEF = γFE , γAmF =
γFAm, γMeF = γFMe, γAmE = γEAm, γMeE = γEMe, γMeAm = γAmMe, due to
the regularity conditions on LN(CEo

), restricts to 20 the number of the un-
known parameters, moreover the assumptions of homogeneity of degree one in
the prices restrict the number of free parameters to 14.

βAf + βF + βE + βAm + βMe = 1

γAfAf + γAfF + γAfE + γAfAm + γAfMe = 0

γFAf + γFF + γFE + γFAm + γFMe = 0

12Therefore SAf is the share equation with respect to Africa, SF is the share equation with
respect to former Soviet Union (FSU) countries, SE is the share equation with respect to
Europa, SMe is the share equation with respect to Middle East. Notice that the wording
Europe accounts for cif prices and quantities of every EU country that imports crude oil from
foreign nations belonging in turn to EU
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γEAf + γEF + γEE + γEAm + γEMe = 0

γAmAf + γAmF + γAmE + γAmAm + γAmMe = 0

γMeAf + γMeF + γMeE + γMeAm + γMeMe = 0

We implement the share equation system empirically by adding a stochastic
component to each share equation, and we assume that the error vector is mul-
tivariate normally distributed with zero mean and the error covariance matrix
Ω. Hence the share equation system can be written as

SAf = βAf + γAfAfLN(PAf ) + γAfFLN(PF ) + γAfELN(PE) + γAfAmLN(PAm) + γAfMeln(PMe) + εAf (6)

SF = βF + γFAfLN(PAf ) + γFFLN(PF ) + γFELN(PE) + γFAmLN(PAm) + γFMeLN(PMe) + εF (7)

SE = βE + γEAfLN(PAf ) + γEFLN(PF ) + γEELN(PE) + γEAmLN(PAm) + γEMeLN(PMe) + εE (8)

SAm = βAm + γAmAfLN(PAf ) + γAmFLN(PF ) + γAmELN(PE) + γAmAmLN(PAm) + γAmMeLN(PMe) + εAm (9)

SMe = βMe + γMeAfLN(PAf ) + γMeFLN(PF ) + γMeELN(PE) + γMeAmLN(PAm) + γMeMeLN(PMe) + εMe

(10)

Notice that the shares sum to unity determines the random disturbances cor-
responding to the five share equations sum to zero that implies a singular co-
variance matrix of errors. Barten (1969)[7] discovered that the full information
maximum likelihood estimates of the parameters can be obtained by arbitrarily
deleting one equation, since the estimates are invariant to the equation removed.
Following Barten, we decide to get rid off the share equation SMe from the anal-
ysis. Moreover using the assumptions of homogeneity of degree one in the prices,
we get the following set of four equations

SAf = βAf + γAfAfLN(
PAf
PMe

) + γFAfLN(
PF
PMe

) + γEAfLN(
PE
PMe

) + γAmAfLN(
PAm
PMe

) + εAf

(11)

SF = βF + γFAfLN(
PAf
PMe

) + γFFLN(
PF
PMe

) + γEFLN(
PE
PMe

) + γAmFLN(
PAm
PMe

) + εF

(12)

SE = βE + γEAfLN(
PAf
PMe

) + γEFLN(
PF
PMe

) + γEELN(
PE
PMe

) + γAmELN(
PAm
PMe

) + εE

(13)

SAm = βAm + γAmAfLN(
PAf
PMe

) + γAmFLN(
PF
PMe

) + γAmELN(
PE
PMe

) + γAmAmLN(
PAm
PMe

) + εAm

(14)
We employ the dataset of statistics on EU crude oil imports13 provided by the
European Commission. The sample consists of monthly data for five macro

13http://ec.europa.eu/energy/sites/ener/files/documents/crude-oil-imports2014.zip
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region areas: Africa (Af), former Soviet Union (FSU) countries (F), Europe
(E), America (Am) , Middle East (Me), over the period Gen 2001 to Dec 2014
for a total of 168 observations in all. Statistics include: volume(1000 bbl),
CIF price($/bbl), % of total imports for every region of origin. The study
exploits CIF prices14. CIF prices are indicated to discriminate the relative
convenience among the crude oil imports between different crude oil imports
(see the subsubsection 5.1.3). The parameters are estimated at the first stage
by a linear SUR estimator.

7.1 Linear constrained SUR Model

The first model adopted is a constrained linear seemingly unrelated regressions
model (see appendix J ). Although the estimate is statistically significant (see
the estimation results in appendix table 15), it can not be considered economi-
cally significant because it violates, in almost every single point of the sample,
the curvature assumption of the regularity conditions. Unfortunately, quasi-
concavity cannot be guaranteed by any parametric restriction since the property
is data dependent for the translog functional form and therefore the common
estimation procedure, based on the linear SUR model, does not provide esti-
mates satisfying concavity assumption in the aftermath. In this case inferences
based on such a cost function are not meaningful consequently the concavity of
the estimated function turns out to be a serious issue.
However, although the estimate is statistically significant, it can not be consid-
ered economically significant as well, because it violates, in almost every single
point of the sample, the curvature assumption of the regularity conditions. Un-
fortunately, quasi-concavity cannot be guaranteed by any parametric restriction
since the property is data dependent for the translog functional form and there-
fore the common estimation procedure based on the linear SUR model does
not provide estimates satisfying concavity assumption in the aftermath. In this
case, inferences based on such a cost function are not meaningful, consequently
the concavity of the estimated function turns out to be a serious issue.

7.2 Local Concavity and Non-Linear SUR Model

Curvature requires that the cost function is a concave function of prices or,
equivalently, that the Hessian matrix of the cost function, H, is negative semi-
definite (see appendix B). In the case of a translog functional form, quasi-
concavity can be imposed locally at a reference point.
As shown by Diewert and Wales (1987), the Hessian matrix, H, is negative
semidefinite if and only if the following matrix is negative semidefinite

G = Γ − s + s′s

where Γ = [γij ], s = (s1, · · · , sn) is the share vector, and s is the n×n diagonal
matrix which has the share vector s on the main diagonal.
At the reference point (where all prices are set to one), the G matrix can be
simplified as follows:

14The CIF price is defined by the Commission of the European Communities [18] as the
price which ”include the fob price (the price actually invoiced at the port of loading), the cost
of transport, insurance and certain charges linked to crude oil transfer operations”
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Gij = γij + βiβj − δijβi

with δij = 1 if i = j and 0 otherwise.
Ryan and Wales (2000) [57]and Feng and Serletis (2008) [26], demonstrated that
local concavity can be imposed by setting at the reference point G = H = −KK′

as follows:

γij + βiβj − δijβi = (−KK′)ij , i, j = 1, · · · , n

where K is a lower triangular matrix.

Notice that the number of independent γij equals the number of independent
values Kij .
Without considering symmetry, we know that since the elements of any row
of the Γ matrix add up to zero and therefore only (n − 1) × (n − 1) elements
of are linearly independent. Therefore, the K matrix must be of dimension
(n− 1)× (n− 1) as well.
It can easily be shown that in our case with four fuels (n = 5), i = Af ;F ;E;Am;Me
the ij elements of Γ can be replaced by the kij elements of K as follows (see
Feng and Serletis (2008)[26], )

γAfAF = −K2
AfAf − β2

Af + βAf

γFF = −K2
FF −K2

FAf − β2
F + βF

γEE = −K2
EE −K2

EF −K2
EAf − β2

E + βE

γAmAm = −K2
AmAm −K2

AmE −K2
AmF −K2

AmAf − β2
Am + βAm

γAfF = −KAfAfKFAf − βAfβF

γFE = −KFFKEF −KFAfKEAf − βFβE

γEAm = −KEEKAmE −KFFKAmF −KEAfKAmAf − βEβAm

γAfE = −KAfAfKEAf − βAfβE

γFAm = −KFFKAmF −KFAfKAmAf − βFβAm

γAfAm = −KAfAfKAmAf − βAfβAm
This system of parametric restrictions must be imposed at the reference point15

to ensure that H is negative semidefinite. Clearly, the flexibility of the translog

15The employed reference point is the mean value for each i-th price considered in the
analysis
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specification is not destroyed, because the n(n−1)/2 elements of K just replace
the n(n − 1)/2 elements of Γ in the estimation. Notice that, by replacement,
the coefficients γij become nonlinear functions of Kij ruling out any linear es-
timation technique as a possible empirical model to implement despite the fact
that the original function is linear in parameters.
In order to estimates the new parameters we will employ a nonlinear SUR model
(see appendix K). See the estimation results in appendix table 23.

7.3 Elasticity of Substitution

Allen Uzawa elasticity - σaij
The Allen Uzawa elasticity of substitution classifies a pair of inputs as direct
substitutes (complements) if an increase in the price of j− th commodity causes
an increase (decrease) in quantity demanded of the other. It can be demon-
strated that Allen Uzawa elasticity can be written as follows

σaij =
γij + SEi

SEj

SEiSEj

σaii =
γii + S2

Ei
− SEi

S2
Ei

Morishima elasticity - σmij
Morishima elasticity of substitution rates a pair of inputs as direct substitutes
(complements) if an increase in the price of j-th commodity causes the quantity
of the other to increase (decrease) relatively to the quantity of the input whose
price has changed.
In other words, σmij measures the impact of a change of producer’s j price over
the market share ratio between i and j when all other prices are kept constant,
but all quantities adjust to their optimal levels.

σmij = SEj
(σaij − σaii)

If σmij > 0 we say that inputs i and j are Morishima substitutes. If σmij < 0 we
say that inputs i and j are Morishima complements.
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Table 2: Allen Uzawa Elasticity

Allen Uzawa Elasticity

σaAfAf -6,39783

σaAfF -1,45753

σaAfE 0

σaAfAm 0

σaAfMe 9,997627

σaFAf -1,45753

σaFF -0,33205

σaFE 0

σaFAm 0

σaFMe 2,277623

σaEAf 0

σaEF 0

σaEE 0

σaEAm 0

σaEMe -3,2E-16

σaAmAf 0

σaAmF 0

σaAmE 0

σaAmAm 0

σaAmMe 6,86E-16

σaMeAf 9,997627

σaMeF 2,277623

σaMeE -3,2E-16

σaMeAm 6,86E-16

σaMeMe -15,6229
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Table 3: Morishima Elasticity

Morishima Elasticity

σmAfF 1,700889

σmAfE 1,524486

σmAfAm 0,225034

σmAfMe 2,947425

σmFAf -0,22789

σmFE 0,079121

σmFAm 0,011679

σmFMe 0,469143

σmEAf 0

σmEF 0

σmEAm 0

σmEMe -5,8E-17

σmAmAf 0

σmAmF 0

σmAmE 0

σmAmMe 1,23E-16

σmMeAf 5,187788

σmMeF 6,162936

σmMeE 3,722643

σmMeAm 0,54951
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7.4 Discussion

On the base of our analysis not all the alternatives to Former Soviet Union
(FSU) oil are Morishima substitutes. There are only two reliable alternatives
to the crude oil provided by FSU countries: Africa (σmAfF = 1, 700889 ), Mid-
dle East (σmMeF = 6, 162936) since these are the only sources, according to our
estimation, to ensure energy replacement ( a positive Morishima elasticity) as
a result of an upward variation of the FSU oil prices.
We might notice that there is a huge distance between the two estimated elastic-
ities, as a matter of fact, the substitutability of the FSU crude oil with Middle
Eastern crude is more than three times greater than with African crude.
This situation could have important implications for the future European en-
ergy policy. For instance, the resolution of the EU embargo on oil exports from
Iran will likely turn into a substitution effect of the imported crude oil from
Russia to Iran in the long run. Russia has been one of the beneficiaries of the
embargo having more than doubled exports into Iran’s primary markets like Eu-
rope. This substitution effect is coherent with our estimate (σmFMe = 0, 469143).
Probably because the benchmark export grade of FSU countries is similar to
Iran’s flagship blend. However, in the light of our estimated asymmetric elastic-
ities, a turnaround flow from FSU countries to Middle Eastern countries could
occur even stronger (σmMeF = 6, 162936 ). Our evidence also indicates that the
relative demand for crude oil from FSU countries is inelastic to both Europe
and America. Moreover, the new conflicts in Iraq would probably steer demand
to African nations (σmAfMe = 2, 947425).

7.5 Conclusions

In order to study the imported crude oil demand and the degree of substitutabil-
ity between FSU crude oil and several alternatives, I have proposed to use a euro
area KLEM production function and a dataset of monthly data of crude oil im-
ports (Volume (1000 bbl) and CIF prices ($/bbl)) provided by the European
Commission. I have decided to sort the data into five groups by macro areas
of origin ( Africa, Former Soviet Union Countries (FSU), Europe, America and
Middle East) and to employ CIF prices in order to get rid off, from the analy-
sis, all the heterogeneity arising from a different distance, quality and taxation
characterising the imported supply from the foreign countries.
Assuming that the European technology is: 1) aggregate homothetic weakly
separable in quantities of imported crude oil; 2) linear homogeneous in inputs
and assuming that 3) the aggregate industry cost function satisfies the regularity
conditions, it has been demonstrated, on the base of the Composite Commodity
Theorem, how to study the substitutability of European crude oil imports by
Morishima elasticities.
With this type of elasticity, it has been possible to isolate the impact that the
change of the oil price, in the Former Soviet Union (FSU) market, can determine
on the EU relative demand of an alternative supply.
I have adopted two econometric estimation procedures. The first has required:
1) the choice of a flexible functional form of a unit cost function. The choice
has fallen on a translog cost function; 2) a system of share equations16; 3) the

16A share equation explains the value which is imported from the i-th country on the total
value imported
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estimation of the parameters with a constrained linear SUR estimator.
Following the first procedure, it has been possible to obtain statistically signif-
icant estimates but not coherent with the assumption of the concavity of the
cost function.
The second estimation procedure consisted in reparameterizing the original sys-
tem of share equations so as to ensure the local concavity of the cost function
at a reference point, that coincides to the sample mean price (see Diewert and
Wales (1987)). This reconfiguration has made the problem not linear anymore
and a nonlinear SUR model has been employed for the new parameter estima-
tion.
The result has indicated that: the crude oil provided by former Soviet Union
(FSU) countries is strongly substitutable with those imported from African and
Middle Eastern countries while it is not substitutable with those imported from
European and American countries.
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APPENDIX 1

A
Shephard’s Lemma

Let’s denominate the production inputs in terms of a single q = m + 3 dimen-
sional vector x of all the input of the production function.

x = (E1, E2, ..., Eo, ..., xi, ..., Em, L,M,K)′ ≥ 0

Let it be consistent with the EU aggregate technology production function

f(x) ≥ y

We denote by vector of factor prices p

p = (PE1
, PE2

, ..., PEo
, ..., pi, ..., PEm

, PL, PM , PK)

the vector of input prices. Suppose all the price are given ( price taker firms).
Shephard duality theorem states that under certain condition (Regularity condi-
tions) the cost function C(p, y) can completely describe the technology (Duality
theorem).

C(p, y) = minxi≥0{p′x|f(x) ≥ y}

provided that cost function satisfies regularity conditions, we can obtain the
cost minimizing input demand for the i-th factor by partially differentiating the
cost function with respect to the i-th factor price

xi(p, y) =
∂C

∂pi
, i = 1, ..., q

B
Regularity Conditions

• Positivity C(y, p) is a positive real-valued function

C(y, p) ≥ 0,∀p, y > 0 and C(y, p) = 0

• Monotonicity

Monotonicity requires positive marginal products of all inputs.

C(y, p) is a non-decreasing in p and y.

∂C

∂pi
≥ 0, i = 1, ..., q

because xi ≥ 0, i = 1, ..., q and

∂C

∂y
≥ 0, i = 1, ..., q
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• Homogeneity C(y, p) is linear homogeneous in p. By Euler theorem we
obtain the following expressions

Σqi=1pi
∂C

∂pi
= C

Σqi=1pi
∂2C

∂pi∂pj
= 0,∀j

Σqi=1pi
∂2C

∂pi∂y
=
∂C

∂y
,∀j

• Simmetry C(y, p) is twice differentiable, Young theorem implies.

∂2C

∂pi∂pj
=

∂2C

∂pj∂pi
, i, j = 1, ..., q

or
∂xi
∂pj

=
∂xj
∂pi

, i, j = 1, ..., q

strictly speaking, the Hessian matrix must be symmetric

• Concavity C(y, p) is concave in p if[
∂2C

∂pi∂pj

]
∀i,j

is a negative semidefinite matrix.

C
Composite Commodity Theorem

It applies every time any single commodity, belonging to a group of commodi-
ties, has a price moving simultaneously and proportionally together with the
others. This assumption seems to be consistent with commodities like differ-
ent crude oil qualities or oil blends supplied by various nations and regions.
We define the composite European imported crude oil commodity Eo to be the
composite European crude oil imports expenditure differentiated by country of
origin, Eo1, Eo2, ..., Eon. We assume their prices evolve in time proportionally
together such that

PEoi
= ΘP 0

Eoi
,∀i = 1, ..., n

where P 0
Eoi

is the initial price or just the price applied a time before PEoi
.

Notice that next definitions of vector x and p differ from the previous pro-
vided in appendix A because this time we don’t lump the crude oil supplies
Eo1, Eo2, ..., Eon into a composit commodity Eo. We denote by vector of inputs

x∗ = (E1, E2, ..., Eo1, Eo2, ..., Eon, ..., Em, L,M,K)′ ≥ 0

We denote by vector of prices

p∗ = (PE1 , PE2 , ..., PEo1 , PEo2 , ..., PEon , ..., PEm , PL, PM , PK)

The cost minimization problem given p and x can be formalized as:
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Minx∗(p∗)′(x∗)

s.t.f(x∗) = y

the correspondent Lagrangian is

L(x∗, λ; p∗, y) = p′x ∗ −λ(f(x∗)− y)

applying envelop theorem with respect to Θ we obtain17

∂C(p∗, y)

∂Θ
=

n∑
i=1

EoiP
0
Eoi

In the light of the Shephard’s lemma (see appendix A) we might interpret Θ as
the price of the composite commodity

Θ = PEo

while
∑n
i=1EoiP

0
Eoi

might be interpreted as the quantity Eo of the composite
commodity.

Eo =

n∑
i=1

EoiP
0
Eoi

So that we have

∂C(p∗, y)

∂PEo

= Eo

therefore we can equivalently consider, for the same cost minimization problem,
next two vectors:
vector of inputs

x = (E1, E2, ..., Eo, ..., Em, L,M,K)′

vector of prices

p = (PE1 , PE2 , ..., PEo , ..., PEm , PL, PM , PK)

which are exactly the same vectors provided at appendix A.
The equivalent minimization problem is

Minxp
′x

s.t.f(x) = y

17any Eoi is a function of p∗ and y
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Given the price vector π = (PEo1
, PEo2

, ..., PEon
) and the input vector z =

(Eo1, Eo2, ..., Eon) The optimization problem may be solved in two stages (Denny
and Fuss, 1975 [20]). In the second stage the economic agents optimize with
respect to the fuel mix of Eo, therefore the resulting cost function is

CEo
= C(π, y)

while in the first stage the optimisation is concerned with the capital K, labour
L, materials M and Energy Eo. In this case, the resulting cost function is

C = C(p, y)

D
MRS between Eoi and Eoj

From Appendix C

Eo =

n∑
i=1

EoiP
0
Eoi

under the standard assumption of neoclassical economics goods and services are
continuously divisible. Therefore, applying Dini’s Theorem we can get the MRS
between any two imported quantities of crude oil from different countries.

MRS =
∂Eoi
∂Eoj

= −

∂Eo
∂Eoj
∂Eo
∂Eoi

= −
P 0
Eoj

P 0
Eoi

E
Cost Share Equation

By definition
∂LN(C)

∂LN(PEoi
)

=
PEoi

C

∂C

∂PEoi

, i = 1, . . . , n

by Shephard’s Lemma A we get

∂LN(C)

∂LN(PEoi)
=
PEoi

C
Eoi = SEOi

, i = 1, . . . , n

F Linear Homogeneous production function

We denote a vector of inputs x and a vector of prices p, a continuous and increas-
ing in x aggregate technology production function f(x, t) and a cost function
C(y, p).
If f is linearly homogeneous in x then C(y, p) = y · C(p).
Proof.

C(p, y) = minx{p′x : f(x) ≥ y}
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= minx{p′x : f(x) = y}

= minx{p′x :
1

y
· f(x) = 1}

= minx{p′x : f(
x

y
) = 1}

= minx{y · p′
x

y
: f(

x

y
) = 1}

= y ·minx{p′
x

y
: f(

x

y
) = 1}

= y ·minq{p′q : f(q) = 1}

= y · C(p)

similarly, it is possible to demonstrate that

C(π, y) = y · C(π)

where π is the price vector of the imported crude oil π = (PEo1 , PEo2 , ..., PEon)
and where the input vector is the quantity vector of the imported crude oil
z = (Eo1, Eo2, ..., Eon)

G Flexible Functional Form of a Cost Function

A flexible functional form f is an arbitrary function capable to approximate to
the second order a given continuous differentiable function f∗ at a given point
x∗ ∈ Rn. Consequently any candidate function f must satisfy, as a matter of
fact, a series of constraints:

a. f(x∗) = f∗(x∗)

b. 5f(x∗) = 5f∗(x∗)

c. 52f(x∗) = 52f∗(x∗)

In the paper, it has been employed a translog unit cost function which is a
classical flexible functional form which satisfies the following conditions

a. C(p∗) = C∗(p∗)

b. 5C(p∗) = 5C∗(p∗)

c. 52C(p∗) = 52C∗(p∗)

Point a) determines that the flexible functional form of C inherits the regularity
conditions at the point p∗ consistently with the cost minimization problem. See
appendix B.

Consider that:
Positivity has usually been checked before the estimation took place.
Monotonicity violations are frequent and empirically meaningful since this
requirement is not automatically satisfied for most functional forms.
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In the case of the translog function, monotonicity has been ensured when the
following inequality holds

∂C

∂pi
=
C

pi

∂LN(C)

∂LN(pi)
=
C

pi
(βi +

n∑
j=1

γijLN(pi)) ≥ 0, i = 1, ..., q

therefore C(p) is a non-decreasing in p.
Since both C and pi are positive numbers, monotonicity depends on the sign
of the term in parenthesis. Notice that if prices are all equal to one, what does
really matter is the sign of {βi} for i = 1, ..., q.
Linear homogeneity (homogeneity of degree 1) in prices of cost function holds
when: given an arbitrary constant value t the following expression hold

LN(t · CEo
(p)) = LN(CEo

(t · p))

We need to verify the conditions ensuring that the previous expression holds.

LN(CEo
(t · p)) = LN(α0) +

n∑
i=1

βiLN(t · Pi) +
1

2

n∑
i=1

n∑
j=1

γijLN(t · pi)LN(t · pj)

= LN(α0) +
∑n
i=1 βiLN(pi) + LN(t)

∑n
i=1 βi+

+
1

2

n∑
i=1

n∑
j=1

γij [LN(pi)LN(pj) + LN(pi)LN(t) + LN(pi)LN(t) + LN(t)2]

Consequently, the following conditions

n∑
i=1

βi = 1

n∑
i=1

γij =

n∑
i=1

γji = 0,∀j = 1, ..., n

are sufficient for ensuring the homogeneity of degree 1 .

H Linear Constrained SUR Model

A constrained SUR model has been employed for estimating the gammas and
betas of the system of equations 11 12 13 14 given a set of linear constraints.

S = Xb+ ε such that Rb = r

where S =


SAf
SF
...

SAm

 , X =


XAf 0 . . . 0

0 XF . . . 0
...

...
. . .

...
0 0 . . . XAm

 , b =


bAf
bF
...

bAm

 , ε =


εAf
εF
...

εAm


With N=5 and K=168 we get that estimation of b
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b̂RFGLS = b̂FGLS−
(
XT(Σ̂−1⊗IN )X

)−1
RT
[
R
(
XT(Σ̂−1⊗IN )X

)−1
RT
]−1(

Rb̂FGLS−r
)

where

b̂FGLS =
(
XT(Σ̂−1 ⊗ IN )X

)−1
XT(Σ̂−1 ⊗ IN ) y

XAf = XF = XE = XAm =



1 LN(
PAf
PMe

)(t) . . . LN(
PAm
PMe

)(t)

1 LN(
PAf
PMe

)(t+ 1) . . . LN(
PAm
PMe

)(t+ 1)

...
...

. . .
...

1 LN(
PAf
PMe

)(t+ k) . . . LN(
PAm
PMe

)(t+ k)


,

and

bAf =


βAf
γAfAf

...
γAfAm

 bF =


βF
γFAf

...
γFAm

 bE =


βE
γEAf

...
γEAm

 bAm =


βAm
γAmAf

...
γAmAm


I Likelihood ratio test of the nonlinear SUR model

Consider the likelihood L = L(θ | y) of a statistical model where y is the vector
observations of n i.i.d observations drawn from a distribution with parameter θ
belonging to a submanifold B1 of Rd with dimension dim(B1) = s. Let B0 ⊂ B1

be a submanifold with dimension dim(B0) = m. We are interested in testing
H0 : {θ ∈ B0} given the following definition of deviance d

d = 2(ln( Lalt model)− ln( Lnull model)) ∼ χ2
s−m

Wilks’ theorem [64] says that, under usual regularity assumptions, d is asymp-
totically χ2 distributed with s−m degrees of freedom when H0 holds true.
Notice that the log-likelihood function of the nonlinear SUR model is :

ln(L) = −1

2
ln(|Σ| )− 1

2
(y − f(x; b))T(Σ−1 ⊗ I)(y − f(x; b))− NT

2
ln(2π)

With unknown Σ matrix one can proceed with FGLS. Iterated FGLS provides
maximum likelihood estimates.

ln(L) = −1

2
ln(|̂Σ|)− 1

2
(y − f(x; b))T(Σ̂−1 ⊗ I)(y − f(x; b))− NT

2
ln(2π)

where y is a vector containing all the dependent variables, f(x;β) is a vector of
functions of x, x is a vector of independent variables, b in a vector of coefficients,
N is the number of equations, T is the number of observations, Σ̂ is the expected
variance-covariance matrix.
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J Linear SUR model

Table 4: MODEL 1 Unrestricted

Estimate Std. Error t value Pr(> |t|)

βAf 0,225997894 0,004167818 54,22451721 0

γAfAf 0,270871767 0,109667941 2,469926613 0,014544186

γAfF 0,204112209 0,146731842 1,391056005 0,16610433

γAfE -0,621596382 0,153848064 -4,040326329 8, 21E − 05

γAfAm 0,028357764 0,052301819 0,5421946 0,588424924

βF 0,396089768 0,009234807 42,89096458 0

γFAf -0,345656323 0,24299582 -1,422478475 0,156798266

γFF 2,039369496 0,325119846 6,272669984 3, 07E − 09

γFE -1,337385307 0,340887555 -3,923244742 0,000128534

γFAm -0,121279981 0,115887316 -1,04653369 0,296864104

βE 0,197591472 0,006269804 31,51477734 0

γEAf -0,203487659 0,164977587 -1,233426085 0,219192523

γEF -1,515719438 0,220734199 -6,866717742 1, 31E − 10

γEE 1,460349304 0,231439398 6,30985614 2, 53E − 09

γEAm 0,034682835 0,078679583 0,440811122 0,659933825

βAm 0,040245835 0,001289202 31,2176302 0

γAmAf 0,078816687 0,033922824 2,323411737 0,021392173

γAmF 0,150203581 0,045387543 3,309356932 0,001151042

γAmE -0,245451136 0,047588755 -5,15775494 7, 17E − 07

γAmAm 0,015939204 0,016178159 0,985229767 0,325971397
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Constraints for imposing symmetry to the translog cost function

Table 5: MODEL 1 Restricted

Estimate Std. Error t value Pr(> |t|)

βAf 0,224631 0,003886 57,79861 0

γAfAf 0,163638 0,099714 1,64108 0,101259

γAfF 0,033201 0,109594 0,302942 0,76203

γAfE -0,41507 0,100991 -4,10994 4,46E-05

γAfAm 0,051956 0,029066 1,787538 0,074311

βF 0,39467 0,007714 51,16593 0

γFAf 0,033201 0,109594 0,302942 0,76203

γFF 1,943267 0,256372 7,579877 1,18E-13

γFE -1,34125 0,168309 -7,96897 7,11E-15

γFAm 0,097047 0,045174 2,148295 0,032055

βE 0,198592 0,00548 36,23975 0

γEAf -0,41507 0,100991 -4,10994 4,46E-05

γEF -1,34125 0,168309 -7,96897 7,11E-15

γEE 1,322701 0,153997 8,589145 0

γEAm -0,15954 0,037807 -4,21978 2,79E-05

βAm 0,039573 0,001425 27,77348 0

γAmAf 0,051956 0,029066 1,787538 0,074311

γAmF 0,097047 0,045174 2,148295 0,032055

γAmE -0,15954 0,037807 -4,21978 2,79E-05

γAmAm 0,039567 0,016445 2,40606 0,0164
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Table 6: Likelihood ratio test on Restrictions of MODEL 1

LogLik Df Chisq Pr(> Chisq)

1651,797 NA NA NA

1659,33 6 15,06615 0,019748

we accept the restricted model with α = 0, 01
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Imposition of null coefficients γAfF and γFAf

Table 7: MODEL 2 Restricted

Estimate Std. Error t value Pr(> |t|)

βAf 0,224536287 0,003793103 59,19593 0

γAfAf 0,161092884 0,097877726 1,645858 0,100269711

γAfF 0 0 Inf 0

γAfE -0,397789399 0,077785331 -5,113939 4,14E-07

γAfAm 0,055199569 0,026904786 2,051664 0,040597046

βF 0,395354696 0,007461551 52,98559 0

γFAf 0 0 -inf 0

γFF 1,940981861 0,256081359 7,579552 1,18E-13

γFE -1,32067965 0,155647604 -8,485063 0

γFAm 0,09650945 0,044834991 2,152548 0,031716639

βE 0,19818872 0,005412239 36,61862 0

γEAf -0,397789399 0,077785331 -5,113939 4,14E-07

γEF -1,32067965 0,155647604 -8,485063 0

γEE 1,303569768 0,138314898 9,424652 0

γFAm -0,162219172 0,03788176 -4,28225 2,13E-05

βAm 0,039529034 0,001412721 27,98077 0

γAmAf 0,055199569 0,026904786 2,051664 0,040597046

γAmF 0,09650945 0,044834991 2,152548 0,031716639

γAmE -0,162219172 0,03788176 -4,28225 2,13E-05

γAmAm 0,039292878 0,016520078 2,378492 0,017667602
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Table 8: likelihood ratio test to compare model 2 and model 1 restricted

LogLik Df Chisq Pr(> Chisq)

1651,747 NA NA NA

1651,797 1 0,100434 0,75131

we accept model 2 with α = 0, 01
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Table 9: MODEL 3 Restricted

Estimate Std. Error t value Pr(> |t|)

βAf 0,224536 0,003793 59,19593 0

γAfAf 0,161093 0,097878 1,645858 0,10027

γAfE -0,39779 0,077785 -5,11394 4,14E-07

γAfAm 0,0552 0,026905 2,051664 0,040597

βF 0,395355 0,007462 52,98559 0

γFF 1,940982 0,256081 7,579552 1,18E-13

γFE -1,32068 0,155648 -8,48506 0

γFAm 0,096509 0,044835 2,152548 0,031717

βE 0,198189 0,005412 36,61862 0

γEAf -0,39779 0,077785 -5,11394 4,14E-07

γEF -1,32068 0,155648 -8,48506 0

γEE 1,30357 0,138315 9,424652 0

γEAm -0,16222 0,037882 -4,28225 2,13E-05

βAm 0,039529 0,001413 27,98077 0

γAmAf 0,0552 0,026905 2,051664 0,040597

γAmF 0,096509 0,044835 2,152548 0,031717

γAmE -0,16222 0,037882 -4,28225 2,13E-05

γAmAm 0,039293 0,01652 2,378492 0,017668
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Table 10: likelihood ratio test to compare model 3 and model 1 restricted

LogLik Df Chisq Pr(> Chisq)

1651,747 NA NA NA

1651,797 1 0,100434 0,75131

we accept model 3 with α = 0, 01

Table 11: likelihood ratio test to compare model 3 and model 2

LogLik Df Chisq Pr(> Chisq)

1651,747 NA NA NA

1651,747 0 1,82E-12 0

we reject model 3 with α = 0, 01
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Table 12: MODEL 4 Restricted

Estimate Std. Error t value Pr(> |t|)

βAf 0,226531 0,003618 62,61352 0

γAfE -0,29321 0,045483 -6,44663 2,21E-10

γAfAm 0,042151 0,02556 1,649087 0,099606

βF 0,394884 0,007451 53,00003 0

γFF 1,931928 0,255865 7,550576 1,45E-13

γFE -1,30827 0,155254 -8,42663 2,22E-16

γFAm 0,097881 0,044627 2,19332 0,028632

βE 0,197415 0,005385 36,66241 0

γEAf -0,29321 0,045483 -6,44663 2,21E-10

γEF -1,30827 0,155254 -8,42663 2,22E-16

γEE 1,220422 0,129062 9,456099 0

γEAm -0,15589 0,03749 -4,15812 3,63E-05

βAm 0,039729 0,0014 28,36893 0

γAmAf 0,042151 0,02556 1,649087 0,099606

γAmF 0,097881 0,044627 2,19332 0,028632

γAmE -0,15589 0,03749 -4,15812 3,63E-05

γAmAm 0,037456 0,016362 2,289281 0,022378
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Table 13: likelihood ratio test to compare model 4 and model 1 restricted

LogLik Df Chisq Pr(> Chisq)

1650,407 NA NA NA

1651,797 2 2,779529 0,249134

we accept model 4 with α = 0, 01

Table 14: likelihood ratio test to compare model 4 and model 2

LogLik Df Chisq Pr(> Chisq)

1650,407 NA NA NA

1651,747 1 2,679095 0,101673

we accept model 4 with α = 0, 01
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Table 15: MODEL 5 Restricted

Estimate Std. Error t value Pr(> |t|)

βAf 0,22402 0,003286 68,18389 0

γAfE -0,31153 0,044223 -7,0446 4,68E-12

βF 0,395801 0,007426 53,29994 0

γFF 1,964287 0,255229 7,696175 5,11E-14

γFE -1,34431 0,153687 -8,7471 0

γFAm 0,08964 0,043506 2,060394 0,039752

βE 0,198198 0,005357 36,9973 0

γEAf -0,31153 0,044223 -7,0446 4,68E-12

γEF -1,34431 0,153687 -8,7471 0

γEE 1,281488 0,12318 10,40339 0

γEAm -0,12341 0,030571 -4,03684 6,05E-05

βAm 0,039963 0,001366 29,26154 0

γAmF 0,08964 0,043506 2,060394 0,039752

γAmE -0,12341 0,030571 -4,03684 6,05E-05

γAmAm 0,032717 0,015837 2,065898 0,039227
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Table 16: likelihood ratio test to compare model 5 and model 1 restricted

LogLik Df Chisq Pr(> Chisq)

1648,558 NA NA NA

1651,797 3 6,478833 0,090501

we accept model 5 with α = 0, 01

Table 17: likelihood ratio test to compare model 5 and model 4

LogLik Df Chisq Pr(> Chisq)

1648,557647 NA NA NA

1650,407299 1 3,699304 0,054435

we accept model 5 with α = 0, 01
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K Non-Linear SUR model

Table 18: MODEL 1

Estimate Std. Error t value Pr(> |t|)

βAf 0,202362 0,002244 90,18675 0

βF 0,344352 0,005628 61,1806 0

βE 0,238215 0,00399 59,7054 0

βAm 0,035116 0,000807 43,50582 0

KAfAf -0,52239 0,103131 -5,06527 5,32E-07

KFAf -0,20935 0,222152 -0,94236 0,346358

KEAf 0,0315 0,202048 0,155904 0,876157

KAmAf 0,000209 0,057198 0,003653 0,997087

KFF 7,31E-08 2033196 3,59E-14 1

KEF 1,39E-07 6104902 2,28E-14 1

KAmF -7,76E-08 2064520 -3,76E-14 1

KEE 3,65E-08 24889491 1,47E-15 1

KAmE 2,09E-07 1,42E+08 1,47E-15 1

KAmAm -3,22E-07 92937424 -3,46E-15 1
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Table 19: MODEL 2

Estimate Std. Error t value Pr(> |t|)

βAf 0,202601 0,002191 92,45253 0

βF 0,344123 0,005416 63,53614 0

βE 0,238396 0,003852 61,88933 0

βAm 0,035139 0,000789 44,54157 0

KAfAf 0,528708 0,079838 6,622293 7,40E-11

KFAf 0,164849 0,121118 1,361062 0,173964

KEAf 0,007115 0,109612 0,064912 0,948264

KAmAf 0,00152 0,03249 0,046769 0,962711

Table 20: likelihood ratio test to compare model 2 and model 1

LogLik Df Chisq Pr(> Chisq)

1569 NA NA NA

1576 6 15.00288 0.02023429

we accept model 2 with α = 0, 01
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Table 21: MODEL 3

Estimate Std. Error t value Pr(> |t|)

βAf 0,202703 0,002187 92,69634 0

βF 0,34428 0,005378 64,01153 0

βE 0,238335 0,003785 62,97139 0

βAm 0,035074 0,000794 44,18828 0

KAfAf 0,53279 0,057404 9,281487 0

KFAf 0,188784 0,090573 2,084318 0,037519

KAmAf -0,01012 0,031636 -0,31997 0,749095

Table 22: likelihood ratio test to compare model 3 and model 2

LogLik Df Chisq Pr(> Chisq)

1576 NA NA NA

1578 1 2.969443 0.08485108

we accept model 3 with α = 0, 01
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Table 23: MODEL 4

Estimate Std. Error t value Pr(> |t|)

βAf 0,202486 0,002192 92,38942 0

βF 0,344288 0,005376 64,04375 0

βE 0,238282 0,003784 62,97101 0

βAm 0,035173 0,000777 45,2618 0

KAfAf 0,512166 0,054159 9,456666 0

KFAf 0,198392 0,087297 2,272616 0,023373003

Table 24: likelihood ratio test to compare model 4 and model 3

LogLik Df Chisq Pr(> Chisq)

1578 NA NA NA

1579 1 .946628 0.1629507

we accept model 4 with α = 0, 01
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R Code

dat <- read.delim2("dat.txt")

View(dat)

# Define 1st equation

dat$S.af <- I(dat$P.af * dat$Q.af) / I(dat$P.af * dat$Q.af+

dat$P.f * dat$Q.f+ dat$P.e * dat$Q.e+ dat$P.am* dat$Q.am+

dat$P.me* dat$Q.me)

# Define 2nd equation

dat$S.f <- I(dat$P.f * dat$Q.f) / I(dat$P.af * dat$Q.af+

dat$P.f * dat$Q.f+ dat$P.e * dat$Q.e+ dat$P.am* dat$Q.am+

dat$P.me* dat$Q.me)

# Define 3rd equation

dat$S.e <- I(dat$P.e * dat$Q.e) / I(dat$P.af * dat$Q.af+

dat$P.f * dat$Q.f+ dat$P.e * dat$Q.e+ dat$P.am* dat$Q.am+

dat$P.me* dat$Q.me)

# Define 4th equation

dat$S.am <- I(dat$P.am * dat$Q.am) / I(dat$P.af * dat$Q.af+

dat$P.f * dat$Q.f+ dat$P.e * dat$Q.e+ dat$P.am* dat$Q.am+

dat$P.me* dat$Q.me)

# Define 5th equation

dat$S.me <- I(dat$P.me * dat$Q.me) / I(dat$P.af * dat$Q.af+

dat$P.f * dat$Q.f+ dat$P.e * dat$Q.e+ dat$P.am* dat$Q.am+

dat$P.me* dat$Q.me)

# add logarithms of the price ratios

dat$lP.af <- I(log(dat$P.af /dat$P.me))

dat$lP.f <- I(log(dat$P.f /dat$P.me))

dat$lP.e <- I(log(dat$P.e /dat$P.me))

dat$lP.am<- I(log(dat$P.am /dat$P.me) )

#----------------------------------------------------------------------------

# MODEL 1 UNRESTRICTED

# simultaneous equation - MODEL 1

S1 <- S.af ~ 1+lP.af + lP.f + lP.e+ lP.am

S2 <- S.f ~ 1+lP.af + lP.f + lP.e+ lP.am

S3 <- S.e ~ 1+lP.af + lP.f + lP.e+ lP.am

S4<- S.am ~ 1+lP.af + lP.f + lP.e+ lP.am

# unrestricted estimation

library("lmtest", lib.loc="~/R/win-library/3.2")

library("systemfit", lib.loc="~/R/win-library/3.2")

list(Africa = S1, FSU = S2, Europe = S2, America = S2)

fitsur1un <- systemfit(list(Africa = S1, FSU = S2, Europe = S3,

America = S4), "SUR" ,data=dat)

summary(fitsur1un)

60



#-------------------------------------------------------------------------

# MODEL 1 RESTRICTED

# constraints for imposing symmetry to the translog cost function

restrictM <- matrix(c(0,0,1,0,0, 0,-1,0,0,0, 0,0,0,0,0, 0,0,0,0,0,

0,0,0,-1,0, 0,0,0,0,0, 0,1,0,0,0, 0,0,0,0,0,

0,0,0,0,-1, 0,0,0,0,0, 0,0,0,0,0, 0,1,0,0,0,

0,0,0,0,0, 0,0,0,-1,0, 0,0,1,0,0, 0,0,0,0,0,

0,0,0,0,0, 0,0,0,0,-1, 0,0,0,0,0, 0,0,1,0,0,

0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,-1, 0,0,0,1,0),

byrow=TRUE, nrow=6, ncol=20)

# Theil’s F test for testing all constraints

test.constr.1<-linearHypothesis( fitsur1un, restrictM, test = c( "FT",

"F", "Chisq" ))

# if $ p-value>\epsilon$, $ H_{0}$ the restriction is accepted.

#Otherwise, it is rejected. We are confident at 1% about the restriction

#hypothesis

# restricted estimation - imposition of the simmetry assumption to the

# translog cost function

fitsur1re<- systemfit(list(Africa = S1, FSU = S2, Europe = S3,

America = S4), method="SUR" ,data=dat, restrict.matrix=

restrictM)

summary(fitsur1re)

# likelihood Ratio test 1 - accept with alpha=1% p-value=0.01974838

install.packages("lmtest")

library("lmtest", lib.loc="~/R/win-library/3.2")

lrTest1 <- lrtest( fitsur1re, fitsur1un )

print( lrTest1 )

#--------------------------------------------------------------------

# MODEL 2

# selection model - constraints 2 imposition of null coefficients

# Africa_lP.f and FSU_lP.af

restrictM2 <- matrix(c(0,0,0,0,0, 0,1,0,0,0, 0,0,0,0,0, 0,0,0,0,0,

0,0,0,-1,0, 0,0,0,0,0, 0,1,0,0,0, 0,0,0,0,0,

0,0,0,0,-1, 0,0,0,0,0, 0,0,0,0,0, 0,1,0,0,0,

0,0,0,0,0, 0,0,0,-1,0, 0,0,1,0,0, 0,0,0,0,0,

0,0,0,0,0, 0,0,0,0,-1, 0,0,0,0,0, 0,0,1,0,0,

0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,-1, 0,0,0,1,0,

0,0,1,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0),

byrow=TRUE, nrow=7, ncol=20)

61



# Theil’s F test for testing all constraints - 2

test.constr.2<-linearHypothesis( fitsur1un, restrictM2, test = c( "FT",

"F", "Chisq" ))

# restricted estimation 2

fitsur2<- systemfit(list(Africa = S1, FSU = S2, Europe = S3, America =

S4), method="SUR" ,data=dat, restrict.matrix= restrictM2)

summary(fitsur3)

# likelihood Ratio test 2 - accept with alpha=1% p-value=0.0339223

lrTest2 <- lrtest( fitsur2, fitsur1un )

print( lrTest2 )

# likelihood Ratio test 3 - accept with alpha=1% and 5% p-value=0.751309

lrTest3 <- lrtest( fitsur2, fitsur1re )

print( lrTest3 )

#------------------------------------------------------------------------

# MODEL 3

# equazioni simulatenee da stimare -modello 3

S12 <- S.af ~ 1+lP.af + lP.e+ lP.am

S22 <- S.f ~ 1 + lP.f + lP.e+ lP.am

S32 <- S.e ~ 1+lP.af + lP.f + lP.e+ lP.am

S42<- S.am ~ 1+lP.af + lP.f + lP.e+ lP.am

# selection model - constraints 3

restrictM3 <- matrix(c(

0,0,-1,0, 0,0,0,0, 0,1,0,0,0, 0,0,0,0,0,

0,0,0,-1, 0,0,0,0, 0,0,0,0,0, 0,1,0,0,0,

0,0,0,0, 0,0,-1,0, 0,0,1,0,0, 0,0,0,0,0,

0,0,0,0, 0,0,0,-1, 0,0,0,0,0, 0,0,1,0,0,

0,0,0,0, 0,0,0,0, 0,0,0,0,-1, 0,0,0,1,0),

byrow=TRUE, nrow=5, ncol=18)

# Theil’s F test for testing all constraints - 2

test.constr.3<-linearHypothesis( fitsur1un, restrictM3, test = c( "FT",

"F", "Chisq" ))

# restricted estimation 3

fitsur3<- systemfit(list(Africa = S12, FSU = S22, Europe = S32,

America = S42),, method="SUR" ,data=dat, restrict.matrix= restrictM3)

summary(fitsur3)

# likelihood Ratio test 4 - accept with alpha=1% and 5% 0.7513099
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lrTest4 <- lrtest( fitsur3, fitsur1re )

print( lrTest4 )

# likelihood Ratio test 5 - accept with alpha=1% and 5% 0.7513099

lrTest5 <- lrtest( fitsur3, fitsur1re )

print( lrTest5 )

#--------------------------------------------------------------------

# MODEL 4

# equazioni simulatenee da stimare -modello 4

S14 <- S.af ~ 1 + lP.e+ lP.am

S24 <- S.f ~ 1 + lP.f + lP.e+ lP.am

S34 <- S.e ~ 1+lP.af + lP.f + lP.e+ lP.am

S44<- S.am ~ 1+lP.af + lP.f + lP.e+ lP.am

# selection model - constraints 4

restrictM4 <- matrix(c(

0,1,0, 0,0,0,0, 0,-1,0,0,0, 0,0,0,0,0,

0,0,1, 0,0,0,0, 0,0,0,0,0, 0,-1,0,0,0,

0,0,0, 0,0,-1,0, 0,0,1,0,0, 0,0,0,0,0,

0,0,0, 0,0,0,-1, 0,0,0,0,0, 0,0,1,0,0,

0,0,0, 0,0,0,0, 0,0,0,0,-1, 0,0,0,1,0),

byrow=TRUE, nrow=5, ncol=17)

# restricted estimation 4

fitsur4<- systemfit(list(Africa = S14, FSU = S24, Europe = S34,

America = S44), method="SUR" ,data=dat, restrict.matrix= restrictM4)

summary(fitsur4)

# likelihood Ratio test 6 - accept with alpha=1% and 5% p-value= 0.10167

lrTest6 <- lrtest( fitsur4, fitsur3 )

print( lrTest6 )

# likelihood Ratio test 7 - accept with alpha=1% and 5% p-value=0.249134

lrTest7 <- lrtest( fitsur4, fitsur1re )

print( lrTest7 )

#---------------------------------------------------------------------

# MODEL 5

# equazioni simulatenee da stimare -modello 5

S15 <- S.af ~ 1 + lP.e

S25 <- S.f ~ 1 + lP.f + lP.e+ lP.am

S35 <- S.e ~ 1+lP.af + lP.f + lP.e+ lP.am
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S45<- S.am ~ 1 + lP.f + lP.e+ lP.am

# selection model - constraints 5

restrictM5 <- matrix(c(

0,1, 0,0,0,0, 0,-1,0,0,0, 0,0,0,0,

0,0, 0,0,-1,0, 0,0,1,0,0, 0,0,0,0,

0,0, 0,0,0,-1, 0,0,0,0,0, 0,1,0,0,

0,0, 0,0,0,0, 0,0,0,0,-1, 0,0,1,0),

byrow=TRUE, nrow=4, ncol=15)

# restricted estimation 5

fitsur5<- systemfit(list(Africa = S15, FSU = S25, Europe = S35,

America = S45),, method="SUR" ,data=dat, restrict.matrix= restrictM5)

summary(fitsur5)

# likelihood Ratio test 8 - accept with alpha=1% and 5% p-value= 0.05443

lrTest8 <- lrtest( fitsur5, fitsur4 )

print( lrTest8 )

# likelihood Ratio test 9 - accept with alpha=1% p-value= 0.01043849

lrTest9 <- lrtest( fitsur5, fitsur1re )

print( lrTest9 )

# conservo i valori numerici trasformandoli in dati

print(summary(fitsur5)$coefficients)

coeff1un<-summary(fitsur1un)$coefficients

coeff1re<-summary(fitsur1re)$coefficients

coeff2<-summary(fitsur2)$coefficients

coeff3<-summary(fitsur3)$coefficients

coeff4<-summary(fitsur4)$coefficients

coeff5<-summary(fitsur5)$coefficients

#-------------------------------------------------------------------

# adding the implicit coefficients calculated for Middle east to the

#already calculated coefficients (see the paper)

#for MODEL 1

new.coeff1re<-c(coeff1re[,1],

Middle.East_Intercept=1-coeff1re[1,1]-coeff1re[6,1]-coeff1re[11,1]-

coeff1re[16,1],

Middle.East_LP.af=-coeff1re[2,1]- coeff1re[3,1]- coeff1re[4,1]-

coeff1re[5,1],

Middle.East_LP.f=-coeff1re[7,1]- coeff1re[8,1]- coeff1re[9,1]-

coeff1re[10,1],
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Middle.East_LP.e=-coeff1re[12,1]- coeff1re[13,1]- coeff1re[14,1]-

coeff1re[15,1],

Middle.East_LP.am=-coeff1re[17,1]- coeff1re[18,1]- coeff1re[19,1]-

coeff1re[20,1],

Middle.East_LP.me=-(-coeff1re[2,1]- coeff1re[3,1]- coeff1re[4,1]-

coeff1re[5,1])-( -coeff1re[7,1]- coeff1re[8,1]-

coeff1re[9,1]-coeff1re[10,1])-( -coeff1re[12,1]-

coeff1re[13,1]- coeff1re[14,1]-coeff1re[15,1])-( -

coeff1re[17,1]- coeff1re[18,1]- coeff1re[19,1]-

coeff1re[20,1]) )

new.coeff1re<-cbind(new.coeff1re)

#for MODEL 5

new.coeff5<-c(coeff5[,1]

,Intercept.me5=1-coeff5[1,1]-coeff5[3,1]-coeff5[7,1]-coeff5[12,1],

Middle.East_LP.af5=- coeff5[2,1],

Middle.East_LP.f5=-coeff5[4,1]- coeff5[5,1]-coeff5[6,1],

Middle.East_LP.e5=-coeff5[8,1]- coeff5[9,1]- coeff5[10,1]-coeff5[11,1],

Middle.East_LP.am5=- coeff5[13,1]- coeff5[14,1]-coeff5[15,1],

Middle.East_LP.me5=-(- coeff5[2,1])-( -coeff5[4,1]- coeff5[5,1]-

coeff5[6,1])-( -coeff5[8,1]- coeff5[9,1]- coeff5[10,1]-

coeff5[11,1])-( - coeff5[13,1]- coeff5[14,1]-

coeff5[15,1]))

new.coeff5<-cbind(new.coeff5)

#----------------------------------------------------------------

# cheking curvature of the cost function

library("micEcon", lib.loc="~/R/win-library/3.2")

new.coeff.list<-list(new.coeff5)

co5<- c(

const=0,

Af=new.coeff5[1,1],

F=new.coeff5[3,1],

E=new.coeff5[7,1],

Am=new.coeff5[12,1],

Me=new.coeff5[16,1],

AfAf=0,

Aff=0,

Afe=new.coeff5[2,1],

AfAm=0,
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Afme=new.coeff5[17,1],

ff=new.coeff5[4,1],

fe=new.coeff5[5,1],

fam=new.coeff5[6,1],

fme=new.coeff5[18,1],

ee=new.coeff5[10,1],

eam=new.coeff5[11,1],

eme=new.coeff5[19,1],

amam=new.coeff5[15,1],

amme=new.coeff5[20,1],

meme=new.coeff5[21,1]

)

co5<-cbind(co5)

library("numDeriv", lib.loc="~/R/win-library/3.2")

F5=function(x) c(

exp(co5[1]+co5[2]*log(x[1])+co5[3]*log(x[2])+co5[4]*log(x[3])+

co5[5]*log(x[4])+co5[6]*log(x[5])+

co5[7]* log(x[1])*log(x[1])*0.5+

co5[8]* log(x[1])*log(x[2])+

co5[9]* log(x[1])*log(x[3])+

co5[10]* log(x[1])*log(x[4])+

co5[11]* log(x[1])*log(x[5])+

co5[12]* log(x[2])*log(x[2])*0.5+

co5[13]* log(x[2])*log(x[3])+

co5[14]* log(x[2])*log(x[4])+

co5[15]* log(x[2])*log(x[5])+

co5[16]* log(x[3])*log(x[3])*0.5+

co5[17]* log(x[3])*log(x[4])+

co5[18]* log(x[3])*log(x[5])+

co5[19]* log(x[4])*log(x[4])*0.5+

co5[20]* log(x[4])*log(x[5])+

co5[21]* log(x[5])*log(x[5])*0.5

))

library("numDeriv", lib.loc="~/R/win-library/3.2")

F6=function(x) c(

co5[1]+co5[2]*log(x[1])+co5[3]*log(x[2])+

co5[4]*log(x[3])+co5[5]*log(x[4])+co5[6]*log(x[5])+

co5[7]* log(x[1])*log(x[1])*0.5+

co5[8]* log(x[1])*log(x[2])+

co5[9]* log(x[1])*log(x[3])+

co5[10]* log(x[1])*log(x[4])+

co5[11]* log(x[1])*log(x[5])+

co5[12]* log(x[2])*log(x[2])*0.5+

co5[13]* log(x[2])*log(x[3])+

co5[14]* log(x[2])*log(x[4])+

co5[15]* log(x[2])*log(x[5])+

co5[16]* log(x[3])*log(x[3])*0.5+

co5[17]* log(x[3])*log(x[4])+

co5[18]* log(x[3])*log(x[5])+

co5[19]* log(x[4])*log(x[4])*0.5+
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co5[20]* log(x[4])*log(x[5])+

co5[21]* log(x[5])*log(x[5])*0.5

)

hess5<-hessian(F5,c(dat[1,2], dat[1,3], dat[1,4], dat[1,5], dat[1,6]))

jacob5<-jacobian(F5,c(dat[1,2], dat[1,3], dat[1,4], dat[1,5], dat[1,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_1<-quasiconcavity( hess35 )

print(qcv5_1)

hess5<-hessian(F5,c(dat[2,2], dat[2,3], dat[2,4], dat[2,5], dat[2,6]))

jacob5<-jacobian(F5,c(dat[2,2], dat[2,3], dat[2,4], dat[2,5], dat[2,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_2<-quasiconcavity( hess35 )

print(qcv5_2)

hess5<-hessian(F5,c(dat[3,2], dat[3,3], dat[3,4], dat[3,5], dat[3,6]))

jacob5<-jacobian(F5,c(dat[3,2], dat[3,3], dat[3,4], dat[3,5], dat[3,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_3<-quasiconcavity( hess35 )

print(qcv5_3)

hess5<-hessian(F5,c(dat[4,2], dat[4,3], dat[4,4], dat[4,5], dat[4,6]))

jacob5<-jacobian(F5,c(dat[4,2], dat[4,3], dat[4,4], dat[4,5], dat[4,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_4<-quasiconcavity( hess35 )

print(qcv5_4)

hess5<-hessian(F5,c(dat[5,2], dat[5,3], dat[5,4], dat[5,5], dat[5,6]))

jacob5<-jacobian(F5,c(dat[5,2], dat[5,3], dat[5,4], dat[5,5], dat[5,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_5<-quasiconcavity( hess35 )

print(qcv5_5)
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hess5<-hessian(F5,c(dat[6,2], dat[6,3], dat[6,4], dat[6,5], dat[6,6]))

jacob5<-jacobian(F5,c(dat[6,2], dat[6,3], dat[6,4], dat[6,5], dat[6,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_6<-quasiconcavity( hess35 )

print(qcv5_6)

hess5<-hessian(F5,c(dat[7,2], dat[7,3], dat[7,4], dat[7,5], dat[7,6]))

jacob5<-jacobian(F5,c(dat[7,2], dat[7,3], dat[7,4], dat[7,5], dat[7,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_7<-quasiconcavity( hess35 )

print(qcv5_7)

hess5<-hessian(F5,c(dat[7,2], dat[7,3], dat[7,4], dat[7,5], dat[7,6]))

jacob5<-jacobian(F5,c(dat[7,2], dat[7,3], dat[7,4], dat[7,5], dat[7,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_7<-quasiconcavity( hess35 )

print(qcv5_7)

hess5<-hessian(F5,c(dat[8,2], dat[8,3], dat[8,4], dat[8,5], dat[8,6]))

jacob5<-jacobian(F5,c(dat[8,2], dat[8,3], dat[8,4], dat[8,5], dat[8,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_8<-quasiconcavity( hess35 )

print(qcv5_8)

hess5<-hessian(F5,c(dat[9,2], dat[9,3], dat[9,4], dat[9,5], dat[9,6]))

jacob5<-jacobian(F5,c(dat[9,2], dat[9,3], dat[9,4], dat[9,5], dat[9,6]))

hess25 <- rbind(jacob5,hess5)

jacob25<-c(0,jacob5)

hess35<-cbind(jacob25,hess25)

library("miscTools", lib.loc="~/R/win-library/3.2")

qcv5_8<-quasiconcavity( hess35 )

print(qcv5_9)

#----------------------------------------------------------------

# Compute the nearest negative Hessian matrix of the translog cost

# function LN(C) considering that if a monotone transformation

# of a function is concave then the original function is quasiconcave

library("Matrix", lib.loc="C:/Program Files/R/R-3.2.1/library")
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hess52<-hessian(F6,c(dat[168,2], dat[168,3], dat[168,4], dat[168,5],

dat[168,6]))

# in order ti do that we use the PD function on the negative value of the

#hessian matrix obtained with the last linear constrained SUR model

neghess5<- nearPD(-hess5)

print(neghess5)

neghess5<-cbind(neghess5)

startpoint<-cbind(-neghess5[[1]]@x[])

View(startpoint)

#----------------------------------------------------------------

#----------------------------------------------------------------

# Normalize every single price with respect to its mean price

dat$P.af2<- dat$P.af./mean(dat$P.af.)

dat$P.f2<- dat$P.f./mean(dat$P.f.)

dat$P.e2<- dat$P.e./mean(dat$P.e.)

dat$P.am2<- dat$P.am./mean(dat$P.am.)

dat$P.me2<- dat$P.me./mean(dat$P.me.)

dat$S.af2 <- I(dat$P.af2 * dat$Q.af) / I(dat$P.af2 * dat$Q.af+

dat$P.f2 * dat$Q.f+ dat$P.e2 * dat$Q.e+ dat$P.am2* dat$Q.am+

dat$P.me2* dat$Q.me)

dat$S.f2 <- I(dat$P.f2 * dat$Q.f) / I(dat$P.af2 * dat$Q.af+

dat$P.f2 * dat$Q.f+ dat$P.e2 * dat$Q.e+ dat$P.am2* dat$Q.am+

dat$P.me2* dat$Q.me)

dat$S.e2 <- I(dat$P.e2 * dat$Q.e) / I(dat$P.af2 * dat$Q.af+

dat$P.f2 * dat$Q.f+ dat$P.e2 * dat$Q.e+ dat$P.am2* dat$Q.am+

dat$P.me2* dat$Q.me)

dat$S.am2 <- I(dat$P.am2 * dat$Q.am) / I(dat$P.af2 * dat$Q.af+

dat$P.f2 * dat$Q.f+ dat$P.e2 * dat$Q.e+ dat$P.am2* dat$Q.am+

dat$P.me2* dat$Q.me)

dat$S.me2 <- I(dat$P.me2 * dat$Q.me) / I(dat$P.af2 * dat$Q.af+

dat$P.f2 * dat$Q.f+ dat$P.e2 * dat$Q.e+ dat$P.am2* dat$Q.am+

dat$P.me2* dat$Q.me)

# add logarithms

dat$lP.af2 <- I(log(dat$P.af2 /dat$P.me2))

dat$lP.f2 <- I(log(dat$P.f2 /dat$P.me2))

dat$lP.e2 <- I(log(dat$P.e2 /dat$P.me2))

dat$lP.am2<- I(log(dat$P.am2 /dat$P.me2) )

# co[7]=-k11^2-b1^2+b1

# co[12]=-k22^2-k21^2-b2^2+b2

# co[16]=-k33^2-k32^2-k31^2-b3^2+b3

# co[19]=-k44^2-k43^2-k42^2-k41^2-b4^2+b4

# co[8]=-(k11)*(k21)-b1*b2

# co[13]=-(k22)*(k32)-(k21^2)*(k31)-b2*b3

# co[17]=-(k33)*(k43)-(k32^2)*(k42)-(k31^2)*(k41)-b3*b4

# co[9]=-(k11)*(k31)-b1*b3

# co[14]=-(k22)*(k42)-(k21^2)*(k41)-b2*b4
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# co[10]=-(k11)*(k41)-b1*b4

# co[1]=b0

# co[2]=b1

# co[3]=b2

# co[4]=b3

# co[5]=b4

# co[6]=1-b1-b2-b3-b4

# co[11]=-(-k11^2-b1^2+b1)-(-(k11)*(k21)-b1*b2)-(-

#(k11)*(k31)-b1*b3)-(-(k11)*(k41)-b1*b4)

# co[15]=-(-(k11)*(k21)-b1*b2)-(-k22^2-k21^2-b2^2+b2)-(-(k22)*(k32)-

#(k21^2)*(k31)-b2*b3)-(-(k22)*(k42)-(k21^2)*(k41)-b2*b4)

# co[18]=-(-(k11)*(k31)-b1*b3)-(-(k22)*(k32)-(k21^2)*(k31)-b2*b3)-

#( -k33^2-k32^2-k31^2-b3^2+b3)-(-(k33)*(k43)-(k32^2)*(k42)-(k31^2)*(k41)-

#b3*b4)

# co[20]=-(-(k11)*(k41)-b1*b4)-(-(k22)*(k42)-(k21^2)*(k41)-b2*b4)-

#( -(k33)*(k43)-(k32^2)*(k42)-(k31^2)*(k41)-b3*b4)-( -k44^2-k43^2-k42^2-

#k41^2-b4^2+b4)

# co[21]=-(-(-k11^2-b1^2+b1)-(-(k11)*(k21)-b1*b2)-(-(k11)*(k31)-b1*b3)-

#(-(k11)*(k41)-b1*b4))-( -(-(k11)*(k21)-b1*b2)-(-k22^2-k21^2-b2^2+b2)-(-

#(k22)*(k32)-(k21^2)*(k31)-b2*b3)-(-(k22)*(k42)-(k21^2)*(k41)-b2*b4))-( -

#(-(k11)*(k31)-b1*b3)-(-(k22)*(k32)-(k21^2)*(k31)-b2*b3)-

#( -k33^2-k32^2-k31^2-b3^2+b3)-(-(k33)*(k43)-(k32^2)*(k42)-(k31^2)*(k41)-

#b3*b4))-( -(-(k11)*(k41)-b1*b4)-(-(k22)*(k42)-(k21^2)*(k41)-b2*b4)-

#( -(k33)*(k43)-(k32^2)*(k42)-(k31^2)*(k41)-

#b3*b4)-( -k44^2-k43^2-k42^2-k41^2-b4^2+b4))

# MODEL 1 - our new system to fit

library("systemfit", lib.loc="~/R/win-library/3.2")

S52 <- S.af2 ~ b1+(-k11^2-b1^2+b1)*lP.af2 + (-(k11)*(k21)-b1*b2)*lP.f2 +

(-(k11)*(k31)-b1*b3)*lP.e2+ (-(k11)*(k41)-b1*b4)*lP.am2

S62<- S.f2 ~ b2+(-(k11)*(k21)-b1*b2)*lP.af2 +

(-k22^2-k21^2-b2^2+b2)*lP.f2 + (-(k22)*(k32)-

(k21^2)*(k31)-b2*b3)*lP.e2+(-(k22)*(k42)-

(k21^2)*(k41)-b2*b4)*lP.am2

S72 <- S.e2 ~ b3+(-(k11)*(k31)-b1*b3)*lP.af2 + (-(k22)*(k32)-

(k21^2)*(k31)-b2*b3)*lP.f2 + (-k33^2-k32^2-k31^2-b3^2+b3)*lP.e2+

(-(k33)*(k43)-(k32^2)*(k42)-(k31^2)*(k41)-b3*b4)*lP.am2

S82<- S.am2 ~ b4+(-(k11)*(k41)-b1*b4)*lP.af2 + (-(k22)*(k42)-

(k21^2)*(k41)-b2*b4)*lP.f2 + (-(k33)*(k43)-(k32^2)*(k42)-

(k31^2)*(k41)-b3*b4)*lP.e2+ (-k44^2-k43^2-k42^2-k41^2-b4^2+b4)*lP.am2

# our starting point is based on the nearest negative definite Hessian

#matrix previously calculated (see the paper)

start.values <- c(

b1=runif(1, -1, 1),

b2=runif(1, -1, 1),

b3=runif(1, -1, 1),

b4=runif(1, -1, 1),

k11=0.69930544430958,
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k21=runif(1, -1, 1),

k31=runif(1, -1, 1),

k41=runif(1, -1, 1),

k22=runif(1, -1, 1),

k32=runif(1, -1, 1),

k42=runif(1, -1, 1),

k33=0.000000036516126261654200000000,

k43=runif(1, -1, 1),

k44=runif(1, -1, 1)

)

model <- list(S52,S62,S72,S82)

# Compute the nonlinear SUR

Nlfitsur<- nlsystemfit( "SUR", model, start.values, data=dat)

Nlfitsur$b

Nlfitsur$p

Nlfitsur$r2

Nlfitsur$adjr2

sum(Nlfitsur$p[])

# MODEL 2 - our new system to fit

S52 <- S.af2 ~ b1+(-k11^2-b1^2+b1)*lP.af2 + (-(k11)*(k21)-b1*b2)*lP.f2 +

(-(k11)*(k31)-b1*b3)*lP.e2+ (-(k11)*(k41)-b1*b4)*lP.am2

S62<- S.f2 ~ b2+(-(k11)*(k21)-b1*b2)*lP.af2 + (-0^2-k21^2-b2^2+b2)*lP.f2

+(-(0)*(0)-(k21^2)*(k31)-b2*b3)*lP.e2+ (-(0)*(0)-(k21^2)*(k41)-

b2*b4)*lP.am2

S72 <- S.e2 ~ b3+(-(k11)*(k31)-b1*b3)*lP.af2 + (-(0)*(0)-(k21^2)*(k31)-

b2*b3)*lP.f2 + (-0^2-0^2-k31^2-b3^2+b3)*lP.e2+ (-(0)*(0)-(0^2)*(0)

-(k31^2)*(k41)-b3*b4)*lP.am2

S82<- S.am2 ~ b4+(-(k11)*(k41)-b1*b4)*lP.af2 + (-(0)*(0)-(k21^2)*(k41)-

b2*b4)*lP.f2 + (-(0)*(0)-(0^2)*(0)-(k31^2)*(k41)-b3*b4)*lP.e2+

(-0^2-0^2-0^2-k41^2-b4^2+b4)*lP.am2

start.values <- c(

b1=runif(1, -1, 1),

b2=runif(1, -1, 1),

b3=runif(1, -1, 1),

b4=runif(1, -1, 1),

k11=runif(1, -1, 1),

k21=runif(1, -1, 1),

k31=runif(1, -1, 1),

k41=runif(1, -1, 1)

)

model <- list(S52,S62,S72,S82)

# Compute the nonlinear SUR
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Nlfitsur2<- nlsystemfit( "SUR", model, start.values, data=dat)

Nlfitsur2$b

Nlfitsur2$p

Nlfitsur2$r2*

Nlfitsur2$adjr2

sum(Nlfitsur2$p)

# Test the goodness of fit of the model 2

# compute likelihood of the model 1

n<-Nlfitsur$n/Nlfitsur$g

p<-Nlfitsur$g

# Matrix inverse

x<-Nlfitsur$rcovest

kk=svd(x)

zz=kk$v%*%diag(1/kk$d)%*%t(kk$u)

# logaritmo del determinante della matrice di varianza covarianza del

# modello SUR nonlineare

logdet<-determinant((kronecker(x,Diagonal(n, 1))))$modulus[1]

# Loglikelihood function of the residuals

r<-c(Nlfitsur$resid[,1],Nlfitsur$resid[,2],Nlfitsur$resid[,3],

Nlfitsur$resid[,4])

jj<-kronecker(zz,Diagonal(n, 1))

L=-((n*p)/2)*logdet-0.5*t(r)%*%jj%*%(r)-1/2*log(2*pi)

# likelihood model 2

n<-Nlfitsur2$n/Nlfitsur2$g

p<-Nlfitsur2$g

# Matrix inverse

x<-Nlfitsur2$rcovest

kk=svd(x)

zz=kk$v%*%diag(1/kk$d)%*%t(kk$u)

# logarithm of the determinant of the variance covariance matrix ofthe

#nonlinear SUR model

logdet<-determinant((kronecker(x,Diagonal(n, 1))))$modulus[1]

# Loglikelihood function of the residuals

r<-c(Nlfitsur2$resid[,1],Nlfitsur2$resid[,2],Nlfitsur2$resid[,3],

Nlfitsur2$resid[,4])

jj<-kronecker(zz,Diagonal(n, 1))

L2=-(1/2)*logdet-0.5*t(r)%*%jj%*%(r)-(n*p)/2*log(2*pi)

kl<-2*(L2-L)

# Find the 95th percentile of the Chi-Squared distribution with 7 degrees

# of freedom.

qchisq(.95, df=14-8) # 7 degrees

#of freedom

# is the area or probability in the upper tail of the chi-square

# distribution at the 95th percentile of the Chi-Squared distribution

# with 7 degrees of freedom.

1-pchisq(kl[1,1], df=14-8) # P-value of the loglikelihood ratio test -
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# p-value=1 we accept model 2

# MODEL 3 - our new system to fit

S52 <- S.af2 ~ b1+(-k11^2-b1^2+b1)*lP.af2 + (-(k11)*(k21)-b1*b2)*lP.f2 +

(-(k11)*(0)-b1*b3)*lP.e2+ (-(k11)*(k41)-b1*b4)*lP.am2

S62<- S.f2 ~ b2+(-(k11)*(k21)-b1*b2)*lP.af2 + (-0^2-k21^2-b2^2+b2)*lP.f2

+ (-(0)*(0)-(k21^2)*(0)-b2*b3)*lP.e2+ (-(0)*(0)-(k21^2)*(k41)-

b2*b4)*lP.am2

S72 <- S.e2 ~ b3+(-(k11)*(0)-b1*b3)*lP.af2 + (-(0)*(0)-(k21^2)*(0)-

b2*b3)*lP.f2 +(-0^2-0^2-0^2-b3^2+b3)*lP.e2+ (-(0)*(0)-(0^2)*(0)-

(0^2)*(k41)-b3*b4)*lP.am2

S82<- S.am2 ~ b4+(-(k11)*(k41)-b1*b4)*lP.af2 + (-(0)*(0)-(k21^2)*(k41)-

b2*b4)*lP.f2 + (-(0)*(0)-(0^2)*(0)-(0^2)*(k41)-b3*b4)*lP.e2+

(-0^2-0^2-0^2-k41^2-b4^2+b4)*lP.am2

start.values <- c(

b1=runif(1, -1, 1),

b2=runif(1, -1, 1),

b3=runif(1, -1, 1),

b4=runif(1, -1, 1),

k11=runif(1, -1, 1),

k21=runif(1, -1, 1),

k41=runif(1, -1, 1)

)

model <- list(S52,S62,S72,S82)

# Compute the nonlinear SUR

Nlfitsur3<- nlsystemfit( "SUR", model, start.values, data=dat)

Nlfitsur3$b

Nlfitsur3$p

Nlfitsur3$r2

Nlfitsur3$adjr2

sum(Nlfitsur3$p[])

# Test the goodness of fit of the model 3 with respect to model 2

# likelihood model 3

n<-Nlfitsur3$n/Nlfitsur3$g

p<-Nlfitsur3$g

# Matrix inverse

x<-Nlfitsur3$rcovest

kk=svd(x)

zz=kk$v%*%diag(1/kk$d)%*%t(kk$u)

# logarithm of the determinant of the variance covariance
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# matrix of the nonlinear SUR model

logdet<-determinant((kronecker(x,Diagonal(n, 1))))$modulus[1]

# Loglikelihood function of the residuals

r<-c(Nlfitsur3$resid[,1],Nlfitsur3$resid[,2],Nlfitsur3$resid[,3],

Nlfitsur3$resid[,4])

jj<-kronecker(zz,Diagonal(n, 1))

L3=-(1/2)*logdet-0.5*t(r)%*%jj%*%(r)-(n*p)/2*log(2*pi)

kl<-2*(L3-L2)

# Find the 95th percentile of the Chi-Squared distribution with 7 degrees

#of freedom.

qchisq(.95, df=8-7) # 7 degrees of freedom

# is the area or probability in the upper tail of the chi-square

# distribution at the 95th percentile of the Chi-Squared distribution

# with 7 degrees of freedom.

1-pchisq(kl[1,1], df=8-7) # P-value of the loglikelihood ratio test

# p-value=0.08485123 we accept model 3

# MODEL 4 - our new system to fit

S52 <- S.af2 ~ b1+(-k11^2-b1^2+b1)*lP.af2 + (-(k11)*(k21)-b1*b2)*lP.f2 +

(-(k11)*(0)-b1*b3)*lP.e2+(-(k11)*(0)-b1*b4)*lP.am2

S62<- S.f2 ~ b2+(-(k11)*(k21)-b1*b2)*lP.af2 + (-0^2-k21^2-b2^2+b2)*lP.f2

+ (-(0)*(0)-(k21^2)*(0)-b2*b3)*lP.e2+ (-(0)*(0)-(k21^2)*(0)-

b2*b4)*lP.am2

S72 <- S.e2 ~ b3+(-(k11)*(0)-b1*b3)*lP.af2 + (-(0)*(0)-(k21^2)*(0)-

b2*b3)*lP.f2 + (-0^2-0^2-0^2-b3^2+b3)*lP.e2+ (-(0)*(0)-(0^2)*(0)-

(0^2)*(0)-b3*b4)*lP.am2

S82<- S.am2 ~ b4+(-(k11)*(0)-b1*b4)*lP.af2 + (-(0)*(0)-(k21^2)*(0)-

b2*b4)*lP.f2 +(-(0)*(0)-(0^2)*(0)-(0^2)*(0)-b3*b4)*lP.e2+ (-0^2-0^2-0^2-

0^2-b4^2+b4)*lP.am2

start.values <- c(

b1=runif(1, -1, 1),

b2=runif(1, -1, 1),

b3=runif(1, -1, 1),

b4=runif(1, -1, 1),

k11=runif(1, -1, 1),

k21=runif(1, -1, 1)

)

model <- list(S52,S62,S72,S82)

# Compute the nonlinear SUR

Nlfitsur4<- nlsystemfit( "SUR", model, start.values, data=dat)

Nlfitsur4$b

Nlfitsur4$p

Nlfitsur4$r2
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Nlfitsur4$adjr2

sum(Nlfitsur4$p[])

# Test the goodness of fit of the model 4 with respect to model 3

# likelihood model 4

n<-Nlfitsur4$n/Nlfitsur4$g

p<-Nlfitsur4$g

# Matrix inverse

x<-Nlfitsur4$rcovest

kk=svd(x)

zz=kk$v%*%diag(1/kk$d)%*%t(kk$u)

# logarithm of the determinant of the variance covariance matrix of

#the nonlinear SUR model

logdet<-determinant((kronecker(x,Diagonal(n, 1))))$modulus[1]

# Loglikelihood function of the residuals

r<-c(Nlfitsur4$resid[,1],Nlfitsur4$resid[,2],Nlfitsur4$resid[,3],

Nlfitsur4$resid[,4])

jj<-kronecker(zz,Diagonal(n, 1))

L4=-(1/2)*logdet-0.5*t(r)%*%jj%*%(r)-(n*p)/2*log(2*pi)

kl<-2*(L4-L3)

# Find the 95th percentile of the Chi-Squared distribution with 7 degrees

#of freedom.

qchisq(.95, df=7-6) # 7 degrees of freedom

# is the area or probability in the upper tail of the chi-square

# distribution at the 95th percentile of the Chi-Squared distribution

# with 7 degrees of freedom.

1-pchisq(kl[1,1], df=7-6) # P-value of the loglikelihood ratio test

# p-value=0.162945 we accept model 4

print( Nlfitsur )

print( Nlfitsur2 )

print( Nlfitsur3 )

print( Nlfitsur4 )
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Predictability Information Criterion for Selecting

Stochastic Pricing Models

Gabriele D’Amore∗
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Abstract

Pricing models of derivative instruments usually fail to provide reliable
results when risks rise and financial crises occur. More advanced stochas-
tic pricing models try to improve the fitting results adding risk factors
and/or parameters to the models, incurring the risk of overfitted results.
Drawing on these observations, it is proposed a generalisation of the
Akaike Information Criterion (AIC) suitable to evaluate forecasting power
of alternative stochastic pricing models1 for any fixed arbitrary forecast-
ing time-horizon. The Predictability Information Criterion (PIC) differs
from the classical criteria for evaluating statistical models as it assumes
that the random variable to study can (or cannot) be partially predictable,
which makes it particularly suitable for studying stochastic pricing models
coherently with the semimartingale definition of the price process. On the
basis of this assumption the criterion measures and compares the uncer-
tainty of the predictions of two different alternative models when prices
are (or are not) predictable. We conclude with a focus on the crude oil
market by comparing GBM and OU stochastic processes that are com-
monly used for modeling West Texas Intermediate (WTI) oil spot price
returns in derivative pricing models.

Keywords: Model Selection, Information Theory, Predictability, GBM, OU,
Crude Oil.
JEL-Classification: C19, G120, D81

1 Introduction

Recently, market competition and technological advancement have helped the
flourishing of many sophisticated models, facilitating the creation of new, in-
creasingly complex, derivatives and probably the financialization of old markets
such as those of commodities. However, although those new products have
allowed an expansion of the financial markets, increasing the liquidity, they
have also introduced more complexity making them difficult to model and price.

∗Sapienza University of Rome. Mail to: gabriele.damore@uniroma1.it. Corresponding
author at: Department of Economics and Social Sciences, Piazzale AldoMoro, 5 - 00185
Rome(IT).

1In the sense that each one provides a prediction for the same economic variable
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Nowadays, far more sophisticated models than the traditional ones have become
necessary. This has led quantitative finance plays a leading role in pricing, risk
management and hedging practices since the past two decades. However, de-
spite the intellectual effort of quants, it is suspected that inadequate pricing
models are frequently the cause of most of the losses on derivatives. For exam-
ple, as reported in Cont(2006) [26]the application of inadequate mathematical
models in risk management practices has been the cause of massive losses by
financial institutions on several occasions. In this respect, Cont mentioned the
$ 83 million loss incurred by the Bank of Tokyo / Mitsubishi, due to the overval-
uation of a portfolio of swaps and options, and the £ 50 million loss suffered by
NatWest Capital Markets in London because of a mispriced portfolio of German
and U.K. interest rate options and swaptions.
The literature on stochastic modelling constantly deals with this issue improv-
ing the quality of the stochastic models regarding the underlying asset(s), but
this seems not to be sufficient.
There are several limitations of quantitative pricing model studies:
1) ”Model fitting”: quantitative finance and economic theory have considerable
difficulties in adequately describing and predicting the dynamic and the shape
of the future risks underlying the price of assets and derivatives, resulting in the
inability to determine their present value correctly. Paul Wilmott (2009) points
out two relevant issues: a) the extreme complexity of the model prevents to
understand whether the model is adequate to describe reality; b) the attempts
to improve the quality of the stochastic models usually increases the degree of
model complexity, but it doesn’t necessarily mean it’s actually worth it. To seek
the extreme precision in the model calibration is a mere illusion when models
are highly sensitive to changes in the parameters (high complexity) or when the
analysed phenomena are highly unstable because of human behaviour.
2) ”The ongoing evolution of the economic theory”: economic theory concerning
the pricing of assets is still imperfect and evolving. Some questions still have
high relevance:
a) is the asset price predictable? Cochran (2009)[25] wrote: ”in the early
1970s... stock returns were considered close to unpredictable and prices close
to random walks”. All are dramatically different nowadays: long-term stock re-
turns are considered predictable (long run, business cycle correlation) and prices
move on news of discount rate changes (see Lucas (1978)[80]).
b) How do asset prices and returns behave over time? Market noise plays a
relevant role, Timmeramn et.al (2004)[106] said: ”prices and values need not
be closely related” since ”Investors’ information can be so ‘noisy’ (see Black)
at times that prices are far removed from fundamentals”. Intrinsic value is,
however, a non-observable variable ( see Timmerman et al. (2004)[106]) .
Föllmer and Schweizer (1993)[45] proved under rational expectations that sev-
eral stochastic diffusion processes can describe the equilibrium price dynamic
depending on various types of agents’ behaviour on the market. For instance,
information traders or fundamentalists believe that the actual stock price is at-
tracted to its fundamental value. In this case, they proved that logarithmic price
process induced by information traders behaves like an Ornstein-Uhlenbeck pro-
cess around a time dependent level. On the contrary, a model of noise trading
suggests that the logarithmic price process should behave like a random walk.
For these reasons, unfortunately, model selection remain a no easy task. In the
light of the above-listed limitations, an ideal model selection criterion for pricing
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models, for each time horizon, should:

a. evaluate what is the model providing less ”uncertain” predictions;

b. ensure that wrong predictions, due to market noise, do not affect the
measure of uncertainty employed for the comparison, because we’re aware
of their unpredictable nature;

c. evaluate the stability of this kind of uncertainty, whatever is the intrinsic
value of the asset, which is ”unobservable” (for instance when the intrinsic
value of a portfolio is sensibly lower than the market price or vice-versa);

d. penalise highly complex models.

Following these points, I propose a statistical tool I called Predictability In-
formation Criterion (PIC) for choosing a statistical model among alternative
specified parametric models. For each proposed model, this approach estimates
the uncertainty of the predictions in terms of Kullback–Leibler divergence, be-
tween market log returns and modelled log returns, and selects the model with
the lowest divergence.
We formalise the market log-price from time 0 to arbitrary time s as a one-
dimensional real-valued ergodic semimartingale process. According to this def-
inition, we define ỹre(t) to be the corresponding log return process. Fixed the
forecasting time horizon s, the criterion requires:
a) a random sample

{
ỹire(s)

}
i=1,...,n

of i.i.d. random variables, drawn from the

same density distribution f(yre(s)), or a linear transformation of weakly de-
pendent random variables (see proposition 4.2. in Bardet, J. M., Doukhan, P.,
Lang, G., & Ragache, N. (2008) [11]);
b) a theoretical solution ỹMth (s) for each M-th proposed stochastic process whose
randomness is provided by a family of parametric probability density functions
{ft(yMth (s), θ); θ ∈ ΘM}. The predictability information criterion (PIC) is es-
timated by replacing, for each M-th model, the unknown parameter vectors θ
with the asymptotically correct estimator θ̂ (a likelihood estimator or a quasi-
maximum likelihood estimator) and replacing f(yre(s)) with a kernel density
distribution.
The method allows extrapolating the divergence ”excluding” any effect gener-
ated by wrong predictions due to market noise, which is not predictable by
definition. The PIC favours less complex models penalising those with a higher
number of parameters. The PIC can be interpreted as a generalisation of the
Akaike Information Criterion (AIC).
At the end of the study, it is shown an example where it is compared, at several
time horizons, a Geometric Brownian Motion (GBM) to an Ornstein-Uhlenbeck
process (OU) using daily West Texas Intermediate (WTI) crude oil spot prices,
collected by EIA from 02/01/1986 to 21/03/2016.

2 Review on pricing theory and predictability

In the financial economics literature, there is a broad consensus that the move-
ments of asset prices can be described by stochastic models created on some
filtered probability space. Typically, it is believed that such a probability mea-
sure can be identified through a mix of statistical-econometric methodology
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and some economic assumptions. The imposed economic assumptions generally
pertain to the concept of some degree of market efficiency. This framework of
analysis has determined a long debate on the predictability of assets returns.
Cochran(2009) [25] reminds us that: ”much of asset pricing theory stems from
one simple concept: price equals expected discounted payoff”. Therefore the
predictability of an asset would require the ability to predict what payoff will
be paid to the asset owner in the future. One of the first studies that has im-
plicitly dealt with the problem is due to Samuelson(1965)[91] with his seminal
paper ‘Proof that properly anticipated prices fluctuate randomly’. The study
came to a conclusion that, in competitive markets, if the spot stock’s price is
supposed to be equal to the expected discounted value of its futures random
dividends, the expected percentage price movements cannot accurately be an-
ticipated or predicted. Samuelson was thus able to formalise the idea that,
in equilibrium, the competitive prices must move following a random walk if
agents share the same expectations. Price sequence may also exhibit statistical
dependencies with past data but past variations cannot be exploited for deduc-
ing the direction and the intensity of tomorrow’s price change. Fama (1963 [40];
1965[41]; 1965[42], 1970[81]) was the first author who explicitly used the concept
of efficient markets hypothesis to describe the dynamics of prices. In summary,
the hypothesis of efficient markets (EMH) believes that rational agents immedi-
ately use all the available information. Therefore any change in the equilibrium
price can not be anticipated because of the randomness of the updating infor-
mation available on the market that instantly changes the expectations about
the future price. This intuitive idea has formalised as the hypothesis that the
equilibrium price Xt in an efficient market should be a martingale. The efficient
market hypothesis (EMH) is usually supposed to hold in financial markets, in-
cluding commodity derivatives markets. Under EMH commodity prices reflect
nothing but information on fundamentals and agents’ intertemporal preferences.
In 1990 Sims[98]wrote that:”Price changes for a durable good with small stor-
age costs must, in a frictionless competitive market, be in some sense unpre-
dictable”, however the empirical analyses on predictability, conducted in support
of this hypothesis, are voluminous but currently considered controversial. Sev-
eral empirical studies have confirmed that asset returns are predictable, at least
partially, having a significant predictable component inside.(see, for example,
Keim and Stambaugh (1986) [65], Campbell and Shiller (1988)[22], Fama and
French (1988)[43], Hodrick (1992)[55], Stambaugh (1999)[101], Goyal and Welch
(2003)[49], Valkanov (2003)[107], Lewellen (2004)[77], and Boudoukh, Richard-
son, and Whitelaw (2006)[17]).
However, such a component is hardly detected out of the sample ( Bossaerts and
Hillion (1999)[16]). Also, many theoretical studies pointed out that the theo-
retical hypothesis of efficient markets appears to be highly restrictive. Lucas,
Jr. (1978)[80] and Stephen F. Leroy (1973) [75], among others, argue that asset
prices in equilibrium models do not, in general, follow martingale processes. For
instance, Lucas proposed an equilibrium price model where, given a set of se-
curities, agents ”solve a dynamic optimization problem whereby consumption”
is maximally smoothed. As Lucas wrote in his article: ”Within [the framework
of his model], it is clear that the presence of a diminishing marginal rate of
substitution [...] is inconsistent with the [martingale] property.”
Mainly two theoretical explanations are provided in literature: 1) the pre-
dictability is the consequence of achieving equilibrium prices (and Bossaerts
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Green (1989) [15]; Berk and Green (2004)[13]); 2) in behavioral finance the pre-
dictability is determined by the set of incorrect individual expectations, called
cognitive biases, which have an impact on market prices (Bondt and Thaler
(1985)[14]). In the context of the first explanation, a more general and flexible
model to describe the dynamic of the future price was introduced in the litera-
ture.
In general, the mathematical structure of utility maximisation problems and
the risk aversion of the market’s participants essentially implies that an optimal
trading strategy only exists if the discounted price process Xt is a semimartin-
gale process2. This class differs with respect to martingales as they admit a
predictable component inside.
From the theoretical point of view, this model is ideally suited to explain the
pricing process on the base of a more flexible version of market efficiency, namely
no-arbitrage hypothesis. A pricing model, based on this assumption, means to
rule out any possibility to get a ”positive expected gain, over the risk free
return, without any downside risk” (see Föllmer, Hans, et al.(2013) [44]). A
reach letterature studied the consequence of no-arbitrage assumption (Harrison
and Kreps(1979)[50], Kreps (1981) [69], Harrison and Pliska (1981)[51] Cox and
Huang (1991)[31] Delbaen and W. Schachermayer(1994) [33], Ansel and Stricker
(1991)[8], Constantinos Kardaras and Eckhard Platen(2011) [64]). Particularly
important is the paper of Delbaen and W. Schachermayer (1994)[33] where they
demonstrated that there is an hide connection between the economic notion of
no arbitrage (precisely the “No Free Lunch with Vanishing Risk” (NFLVR)
condition) and the mathematical concept of semimartingale for describing the
price dynamic. In this respect, relevant studies of semartingales in continuous-
time processes are by Harrison and Kreps (1979)[50], Kreps (1981), Harrison
and Pliska (1981, 1983)[51][52], Duffie and Huang (1985, 1986)[38][39], Duffie
(1986, 1988)[37][95], Huang (1985, 1987)[57][58], Pliska (1986)[89], and Cox and
Huang (1989, 1991)[30][31].)

3 Model Selection and Akaike Information Cri-
teria

Model selection means to choose a model inside a group of candidate models
M to describe a certain amount y having available a sample of data. In order
to take a decision, it is necessary to define some criteria for evaluating what
characteristics should the best model have among the ones to compare. The
accuracy of the model to fit the data is quite relevant but not enough because
this principle alone does not necessarily ensure the quality of the model. Some-
times models appear to be excellent in describing the data just because affected
by overfitting problem, meaning that the model basically fits the data found in
the sample, rather than representing the underlying pattern of the population.
Thus, a principle of parsimony is frequently added to the selection process,

2A real-valued process X defined on a filtered probability space is called a semimartingale if
it can be decomposed as a sum of a martingale Mt (unpredictable part) and a càdlàg adapted
process of locally bounded variation At ( predictable part)

Xt = Mt +At
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meaning that, it is preferred, among a group of candidate model M, the one
having the lowest degree of complexity, for instance a lower number of parame-
ters (Occam’s razor).
To make a selection, a series of statistical tools, named information criteria,
have been proposed from 70’s. Frequently these information criteria are split
into two types:
1) the first type of information criteria (e.g., AIC, AICc and TIC) selects the
model on the basis of a distance called Kullback-Leibler information and does
not assume the existence of a true model within the set of models to be com-
pared;
2)the second type of information criteria assumes the existence of a ”true” model
of the data generator within the set of models to be compared.
Akaike was the first to formulate an information criterion based on Kullback
Leibler divergence. The objective of this measure is to calculate the distance be-
tween each proposed model and the data generator and select the model having
the shortest divergence. This means that the chosen model does not necessar-
ily coincide with the one having generated the observed data. The particular
feature of this measure is that it can make such a calculation despite the data
generating process is not directly observable.
Akaike showed that the empirical Kullback Leibler divergence, that can be ex-
pressed in terms of the empirical log-likelihood function at its maximum point,
is biased (see Kenneth P. Burnham, David R. Anderson (2002)[21]) and propose
an approximated correction factor. This correction acts like an Occam’s razor
letting the criterion favour the models that are likely to make good predictions
with the expected lowest overfitting problem.
Some of the most relevant papers treating AIC are:
Akaike (1973)[2][1] where it is proved that minimising the expected Kullback-
Leibler divergence between the true density and estimated density of the model
is approximately equivalent to minimising AIC;
Akaike (1974)[3] in this paper the AIC is proposed to be applied for model se-
lection in particular for time series;
Akaike (1981)[4] where it is studied the Bayesian approach to model selection
and describes the Akaike approach in Bayesian terms. He pointed out some
differences, and in particular, Akaike finds a link with his method when priors
and likelihood are expectations of the predictive distribution.
Other comparisons between AIC and Bayesian selection method are in Akaike
(1983)[5] Akaike (1985)[6] Stone (1979)[103] Leamer (1979)[74] Atkinson (1981)[9]
Chow (1981)[24] Shibata (1981)[97] Nishii (1984)[84] J Kuha(2004)[70].
A large number of the AIC generalisations have been proposed over the years.
Some of the most famous are: The Corrected Akaike’s Information Criterion
(AICc) (Sugiura (1978)[104]; and Sakamoto et. al. (1986)[90]) , Takeuchi’s
information criterion (ICT) (Takeuchi 1976 [105]).
The goal of AICc is to improve the performance of the estimator proposed by
Akaike when the number of parameters is too high compared to the sample size.
Hurvich and Tsai(1989) [59] suggested a version suitable for small sample size.
The Takeuchi’s information criterion (ICT) is a modified appropriate version of
AIC when the candidate model cannot be considered a good approximation of
the real data generating process.
A multitude of alternative methods, based on different theoretical assumptions,
were proposed like: BIC(Schwarz 1978 [94], Hoeting et al. 1999[56]) (Spiegelhal-
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ter, Best, Carlin, and Van der Linde 2002 [100], Van der Linde, 2005[78]), EIC
(Ishiguro, Sakamoto, and Kitgawa 1997[61]), FIC (Wei 1992[108]), GIC (Nishii
1984 [83]), NIC (Murata, Yoshizawa, and Amari 1991 [7]) and TIC (Takeuchi
1976[105]) and many others.
Among these above criteria, it is worth mentioning in more detail one of them:
the Bayesian Information Criterion (BIC) that was introduced by Schwarz
(1978)[94] as an asymptotic approximation to a transformation of the Bayesian
posterior probability of a proposed model. The assumptions made for BIC con-
sist of an equal prior probability for each model and, a converging selection
procedure to the right model, if this belongs to the set of candidates.

4 Preliminary Notions

In order to investigate the issue, we are going to provide in the following sections
a:

1) definition of uncertain economic quantity;
2) definition of uncertain prediction of the economic quantity;
3) definition of prediction of the economic quantity;
4) theory that let us measure the uncertainty of the prediction;
5) theory that let us measure the relative uncertainty about the predictions of
two alternative models considering their different complexity.

4.1 Definitions

I propose a definition of uncertain economic quantity, uncertain prediction of
the economic quantity and prediction of an economic quantity, respectively as
follows:

Uncertain Economic Quantity ỹre

Let’s define an uncertain economic quantity (i.e. the future rate of return of
an investment) ỹre as a continuous real valued random variable with a non-
parametric density function fre(yre). An observation of this variable is called
yre.

Uncertain Prediction of the Economic Quantity ỹth

Let’s define the uncertain prediction of an economic quantity (theoretical model)
ỹth (i.e. the solution of a stochastic differential equation at a given future time)
as a continuous real valued random variable with a parametric density function
fyth(yth|θ), and a d-dimensional vector of parameters θ ∈ Θ ⊆ Rd.
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Prediction of the Economic Quantity yth

The prediction of the economic quantity is a real valued deterministic variable
we define as a chosen outcome among the possibles provided by the uncertain
prediction of the economic quantity
We define the prediction to be certain if it has been known that, the theoretical
outcome yth, is equal to the observed outcome yre

yth = yre

before the knowledge of the outcome yre is available .

Consequently we can define the uncertainty about the prediction as the un-
certainty about the equality between values yth and yre.
In order to measure this uncertainty, we will refer to the information theory.

5 Measures of Information and Uncertainty

How can we measure information and uncertainty? Both concepts are related
to the concept of doubt. Information arises when doubt disappears and vice
versa (Kuhlthau 1993 [71] and Leroy, Singell 1987 [76]).
Therefore, given a random variable,

the greater is the number of possible outcomes, the more we are uncertain
about the outcome a priori.

Intuitively, if it is given a prior knowledge over the source of the outcome, it
must change the degree of uncertainty over the possible outcomes.
Shannon (1948) [96] treated the probability distribution as a kind of knowledge
about the source of the outcome. He was able, just using some axioms, to
quantify the expected uncertainty about observing an outcome, or equivalently,
the amount of uncertainty represented by a probability distribution (Jaynes
(1957) [63]). In the context of communication theory, it amounts to the minimal
number of bits that should be transmitted to specify the outcome.
In order to exploite information theory in the analysis we need further definitions
based on Brissaud (2005) page 70. [19], Hartley(1928) [53]and Shannon (1948)
[96].
In order to explain next definitions let’s consider the following hypotheses: sup-
pose a discrete random variable has ”N” possible outcomes; let’s call ”true
outcome” one of them; suppose a decision maker has to decide what is the true
outcome among the possible, knowing the N possible outcomes but unknowing
what is the true outcome among them.
Then we can define:

Information I

The information I is defined to be a prior knowledge of the set of possible out-
comes. It coincides to the knowledge that the decision-maker has got to properly
identify the right outcome correctly. Given a probability space (Γ,A ,P) con-
sider A ∈ A to be an outcome which can happen randomly with probability
P(A) ≡ p, therefore the information due to the outcome A is defined as:
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I = log(p) (1)

Notice that, the information is always a non-positive number and it is increasing
in p. It can be interpreted as the lack of uncertainty (Hartley(1928) [53])

Uncertainty U

We define the uncertainty3 as the Hartley measure (1928) [53] of the outcome
A. It is a measure, related to the sigma-algebra A , of the number of possible
alternatives when the chosen outcome is A.

U = −log(p) (2)

Shannon Entropy H

In the literature (see Kolmogorov 1965 [68] Klir 2005 [67], Casquilho 2014 [23])
it is widely recognized that, starting from several well-justified axiomatic char-
acterizations, Shannon entropy (Shannon (1948) [96]) is the only meaningful
functional for measuring the expected uncertainty (or expected lack of informa-
tion) in probability theory.
Let x̃ be a discrete random variable with probability p.
The entropy is defined as the expected uncertainty over all the possible outcomes
x.

H(x̃) = −
∑
x

p(x)log(p(x)) (3)

(see Kenneth P. Burnham, David R. Anderson (2002)[21])
Shannon entropy quantifies the average uncertainty about the true outcome.

Differential Entropy Hdiff

The differential entropy of a real valued continuous variable x̃ is defined (see
Cover, Thomas M (1991) [29], Kenneth P. Burnham, David R. Anderson (2002)[21]))
as follows:

H(x̃)diff = −
∫ ∞
−∞

f(x) · log(f(x))dx

where f(x) is the probability density function of x̃.
Notice that:

1) the differential entropy is not a measure of the average amount of information
contained in a continuous r.v x̃;
2) a continuous random variable contains an infinite amount of information,

3The Hartley measure is H(A) = log(|A|) = log(
1
1

|A|

) = log(1/p) = −log(p) see Klir(2005)

pag 27 [67].
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because the entropy of the continuous variable x̃ is infinite4 or approximately
equal to

H(x̃) ≈ −lim∆→olog(∆)−
∫ ∞
−∞

f(x) · log(f(x))dx =

= −lim∆→olog(∆)−Hdiff

which diverges to infinity almost always.
However

the difference between two differential entropies can be used as an indicator
for comparing the uncertainty of two continuous r.v. quantized to the same
precision.The mutual information is a typical example.

Mutual information MI

Given two random variables: x̃, ỹ, the mutual information index MI(x̃, ỹ) is
defined as the reduction of expected uncertainty in x̃ by knowing ỹ

MI(x̃, ỹ) = H(x̃)−H(x̃|ỹ)

(see Cover, Thomas M (1991) [29] and Kenneth P. Burnham, David R. Anderson
(2002)[21])).

6 Degree of Relative Predictability

6.1 Residual Entropy related to model M

Given a economic model called model M the residual entropy associated with
the model M is defined as the mutual information between the uncertain eco-
nomic variable ỹre and the uncertain prediction provided by the model, ỹMth .
Therefore, this index can be expressed as the measure of the reduction of the
expected uncertainty about the future value of the economic variable ỹre once
has became available the uncertain prediction ỹMth provided by the model M.

HM
res(ỹre, ỹ

M
th ) = H(ỹre)−H(ỹre|ỹMth ) (4)

The reduction, furthermore, is explainable in terms of Kullback-Leibler diver-
gence as well (see Kenneth P. Burnham, David R. Anderson (2002)[21])

HM
res(ỹre, ỹ

M
th ) = E

[
log

(
p(ỹre, ỹ

M
th )

p(ỹre) · p(ỹMth )

)]
where:

• p(ỹre, ỹMth ) is the joint probability distribution function of the continuous
random variables ỹreand ỹMth ;

• p(ỹre) is the probability distribution function of the continuous random
variable ỹre;

4It is equal to zero if Hdiff → −∞
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• p(ỹth) is the probability distribution function of the continuous random
variable ỹth.

Let’s suppose that two alternative 5 stochastic models are available: model A
and model B

We want to propose a measure that let us compare the degree of predictability
of the economic variable ỹre provided by the two models.

For this purpose we intend to proceed as follows: 1) we need to measure, for
each model, the reduction of uncertainty about the future outcome ỹre, once
the prediction of the model is provided; 2) we need to find a way to compare
the two measurements. We will obviously prefer the model which guarantees
the highest reduction.
Therefore, just using the definition of residual entropy provided in the last
paragraph, we are now allowed to propose a measure of the degree of relative
predictability as the difference of residual entropies calculated over alternative
models A and B 6

HA,B(ỹre, ỹ
A
th, ỹ

B
th) = HA

res(ỹre, ỹ
A
th)−HB

res(ỹre, ỹ
B
th) (5)

if:

HA,B > 0⇒ Model A is expected to be more uncertain with respect to model
B

HA,B < 0⇒ Model B is expected to be more uncertain with respect to model
A

7 Developing a measure for the Degree of Rel-
ative Predictability

We need to give a specific measure of the degree of relative predictability HA,B

for the arbitrary models A and B, given our a priori knowledge (see (12)). For
now, we assume that all the density functions are completely known. We will
relax this assumption in chapter 8.
Under some conditions, explained in the following subsection, it is possible to
write the formula of the degree of relative predictability as a function of an
assigned ȳre given the values of the pointwise predictions for both models ȳAth,
ȳBth, the parametric densities fyAth , fyBth , with their vectors of parameter θA and

θB , and the density fyre

HA,B(ỹre, ỹ
A
th, ỹ

B
th) = HA,B(ỹre, ỹ

A
th, ỹ

B
th)(ȳre|ȳAth, ȳBth, θA, θB , fyre) (6)

later it will be given the explicit formula (16).

5In this sentence each ”alternative” is meant to be any model built to provide a prediction
for the same economic variable ỹre

6 Each model provides a specific theoretical model solution yAth and yBth
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The aim of this formula is to show the dependence of the relative predictability,
with respect to all the possible values that the random variable ȳre ∈ Ȳre ⊆ R
can assume with its probability of occurrence.
First of all, let’s see some needed conditions for the calculation.

7.1 Indeterminacy, uncertainty and wrong predictions

Let’s define {ỹre(t) : t ∈ T} and {ỹMth (t) : t ∈ T} to be two real valued stochastic
processes defining respectively an economic quantity and it’s stochastic model
(eg. the log return based on the price of a commodity). Let’s define 0 to
be the present time and s a future time such that the economic variable ỹre
and the theoretical model solution ỹMth , as defined before, are two random vari-
ables belonging to those stochastic processes observable at the future time s,
ỹre(s) = ỹre and ỹMth (s) = ỹMth .
Let’s suppose that these two stochastic processes, ỹre(t) and ỹMth (t), are semi-
martingales, meaning that, according to Doob’s decomposition theorem, they
both can be respectively decomposed in a sum of two components: a càdlàg
adapted process of locally bounded variation and a local martingale.
Therefore, in the context of our analysis, ỹre and ỹMth can be interpreted as fol-
lows:
1) the nondeterministic part of ỹre describes the inherent unpredictable part
that characterized the future economic quantity to predict. The deterministic
part ȳre is the only predictable part of the economic variable, however it cannot
be directly observed and it cannot be separated from the unpredictable part ẽre;
2) instead ỹMth is affected by a random prediction error, whose range and fre-
quency are due to the ability of the economist to predict the economic quantity
well enough, whereas the deterministic part is the pointwise prediction provided
by the model M

ỹre = ȳre︸︷︷︸
predictable

+ ẽre︸︷︷︸
unpredictable

(7)

ỹMth = ȳMth︸︷︷︸
prediction

+ ẽMth︸︷︷︸
prediction error

(8)

where ẽMth refers to risk in modeling correctly the true variable and ȳMth is the
pointwise prediction provided by the theoretical model.
Moreover on the base of our definitions, we assume that ẽre and ẽMth are inde-
pendent variables.
Thus, on the base of these assumptions, the relative predictability of prediction
models must be linked both to the indeterminacy of the economic variable and
to the uncertainty of the theoretical model.
The theoretical model may differ from the economic variable for four non-
exclusive reasons:

1st type) ȳMth 6= ȳre

2nd type) eMth 6= ere

3th type) ȳMth 6= ere

12



4th type) eMth 6= ȳre

where ere and eMth are realizations respectively of ẽre and ẽMth .
However, not all the possible causes of wrong predictions should reasonably affect
the degree of uncertainty of predictions.
The errors of the 3rd and 4th type are desirable and unavoidable.
The error of the 1st type is a sign of the inability of the theoretical model to
estimate the predictable component (expectation) ȳre correctly. The reason for
this defeat is due to modelling assumptions (economic or statistical) which are
unsuitable to explain the effective expectation (wrong functional form, incorrect
explanatory variables introduced, lack of explanatory variables,...).
The error of the 2nd type is exclusively due to the independence of the unpre-
dictable part of the economic variable and the risk in modelling the true variable
correctly.
Given the definition of residual entropy, we need that

a) both unpredictable components ere and eMth must affect the degree of
predictability

however,

b) the 2nd type error must not affect the uncertainty quantification because
meaningless.

Let’s explain point b) with an example: suppose that the economic variable and
the theoretical model share the same expectation and the same error probability
density function.

ȳMth = ȳre

feMth = fere

We should consider this situation, independently of the value assumed by the
error components, as the best possible result in a modelling sense. Under that
perspective, we can define the two models as identical in spite of the solutions
are different7. It doesn’t make any sense to consider the two models as different
in this case, because the prediction error is only due to ”unpredictable” com-
ponents, while we are supposed to be only interested in the prediction of the
predictable components.

In order to satisfy contemporaneously point a) and point b) we have to
calculate the entropy of the prediction conditioning the probabilities of ỹre and

ỹMth , such that

eMth = ere (9)

Basically, it is proposed to study the degree of relative predictability by calcu-
lating for each model M the residual entropy of a prevision HM

res imposing the
condition (9).

7Note that we have set, the uncertain prediction of the economic quantity (solution of
an economic model) as always given by a sum of a deterministic forecast and a random
error component which must be imagined as coming from a data generating number which is
produced randomly from a given distribution.
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7.2 Conditions for Calculating the Residual Entropy of a
Prediction

In order to compute the residual entropy of a prediction we need to make some
assumptions about the knowledge available at the evaluation moment regarding
the probability distribution functions of the variables ỹre and ỹMth :
1) for each model M we impose a parametric distribution of ỹMth with a vector
of parameters θ. We justify this choice by the fact that theoretical models
very often impose a parametric distribution to the model; 2)we impose a non-
parametric distribution to ỹre; 3) we suppose either ȳre or ȳMth to be known, so
that we don’t assign any uncertainty to those variables; 4) by definitions of ẽre
and ẽMth we consider ỹre and ỹMth to be independent continuous random variables.
Moreover, for the sake of simplicity we suppose they are equivalent ( they share
the same support).
All of the previous assumptions are going to be summarised, from here on out,
by the information set ΨM

ΨM = {ȳre, ȳMth , θ, fyre} (10)

However, as we already seen, to properly isolate the uncertainty of the predic-
tions, we need to impose the condition (9) as well. For this purpose, it is defined
a new random variable z̃ and a new information set ΩM

z̃ = ẽthM − ẽre (11)

the null outcome z of the random variable z̃ is added to the previous information
set determining ΩM

ΩM = {z = 0, ȳre, ȳ
M
th , θ, fyre} (12)

where ΘM ⊆ RdM is the dM -dimensional parameter space of the density func-
tion of the unpredictable part of the theoretical model M (that is feMth) and

θ ∈ ΘM is a given point in that space. The presence of fyre inside the infor-
mation sets means that we are going to consider the density distribution of yre
to be a non-parametric (for now) ”known” density function. We estimate the
vector of parameters θ and the density yre in the next sections.

7.3 Residual Entropy of a Prediction HM
res(ỹre, ỹ

M
th )

Now, we are allowed to calculate the residual entropy, as defined in 6.1, for a
generic model M (it means it will be valid for any model included the generic
couple of models A and B) conditioning both densities to the information set
ΩM

HM
res(ỹre, ỹ

M
th ) = Eỹre,ỹMth |ΩM

[
log

(
pỹre,ỹMth |ΩM (ỹre, ỹ

M
th |ΩM )

pỹre|ΩM (ỹre|ΩM )pỹMth |ΩM (ỹMth |ΩM )

)]
(13)

Where:
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• pỹre,ỹMth |ΩM is the joint probability distribution of ỹre and ỹMth given the

information set ΩM ;

• pỹre|ΩM is the probability distribution of ỹre given the information set ΩM ;

• pỹMth |ΩM is the probability distribution of ỹMth given the information set

ΩM .

After some manipulation (see appendix ”calculation of Hres(ỹre, ỹth)”13) we fi-
nally get

HM
res(ỹre, ỹ

M
th ) = −EyMth |ΩM

[
log
(
fyMth |ΩM (ỹMth |ΩM )

)]
− lim∆→0log(∆)

(14)

where:

fyMth |ΩM (yMth |ΩM ) =
fere(yMth − ȳMth |ΨM ) · feMth(yMth − ȳMth |ΨM )∫∞
−∞ feMth(eMth |ΨM ) · fere(eMth |ΨM )deMth

and

• fere(·|ΨM ) ≡ fere(·) is the conditional probability density function of the
risk related to the economic variable;

• feth(·|ΨM ) is the conditional probability density function of the error com-
ponent of the model.

Therefore, HM
res(ỹre, ỹ

M
th ) is just reduced to the entropy of a new random vari-

able yMth |ΩM with a semiparametric density function fyMth |ΩM (yMth |ΩM ) defined

in appendix (see formula (37)).
It has been also demonstrated (see appendix ”Consequences on the calculation
of Hres(ỹre, ỹth)”13) under the information set Ω, that the theoretical model
ỹth behaves like a function of the economic variable ỹre, meaning that we are
allowed to simplify the previous formula (14) as follows:

HM
res(ỹre, ỹ

M
th ) = −Eyre

[
log
(
fyre|ΩM (ỹre|ΩM )

)]
− lim∆→0log(∆) (15)

where

fyre|ΩM (yre|ΩM ) =
fyre(yre) · feMth(yre − ȳre|ΨM )∫∞

−∞ fyre(yre) · feMth(yre − ȳre|ΨM )dyre

and

• fyre(·) is the true density of the economic variable;

• feth(·|ΨM ) is the conditional probability density function of the error com-
ponent of the model.
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7.4 Degree of Relative Predictability HA,B(ỹre, ỹ
A
th, ỹ

B
th)

Recovering formula (5) we have defined the degree of relative predictability as
the difference between two residual entropies HA

res(ỹre, ỹ
A
th) and HB

res(ỹre, ỹ
B
th).

Therefore, applying formula (15) to formula (5), we finally get

HA,B(ỹre, ỹ
A
th, ỹ

B
th) =

∫ ∞
−∞

fyre(yre)log

(
fyre|ΩB (yre|ΩB)

fyre|ΩA(yre|ΩA)

)
dyre (16)

where
ΩA = {z = 0, ȳre, ȳ

A
th, θ

A, fyre}

ΩB = {z = 0, ȳre, ȳ
B
th, θ

B , fyre}

8 Building the Estimator of HA,B

Standard statistical practice ignores to model uncertainty. Data analysts typ-
ically select a model from a class of models and then proceed as if the chosen
model had generated the data. This approach ignores the uncertainty in model
selection leading to overconfident inferences and decisions that are riskier than
expected. In a certain sense, HA,B can overcome that problem because: 1) it
selects the model that comes closest to the true data generating process; 2) it
compares the ability of the models to make predictions.
HA,B is defined in (6) as a function of ȳre given ȳAth, ȳ

B
th, feAth , feBth , fyre , however,

despite the analysis can be carried out ex-post the resolution of uncertainty, it
requires to estimate some quantities already included in the information set.
By definition (8) both economic models A and B provide a prevision so that
ȳAth, ȳBth are known while probably all the densities cannot be.
We assume, from now on, that the density feAth is defined on the parameter
space ΘA, feBth is defined on the parameter space ΘB while the density fyre is
defined on a non-parametric space F .
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We justify this choice by the fact that the density of the theoretical error com-
ponent, of an economic model M, is very often parametric while fyre can be only
guessed on the base of an observation sample, meaning that we’ll prefer it to be
freely detected without specifying in advance a class of parametric models.
We notice, by the definition (6), that the quantity HA,B depends on θA and
θB . Consequently, it is possible that some parameters can increase the relative
uncertainty of predictions more than others. However, if θA and θB can be re-
garded as random variables, this quantity may be averaged over Θ ≡ ΘA ×ΘB

according to a probability density function fθA,θB (see Lindley (1956)[79]).
I define the degree of relative predictability as a function φ of the vectors of
parameters θA, θB and the density fyre .

HA,B(ỹre, ỹ
A
th, ỹ

B
th) = φA,B(θA, θB , fyre)

In order to build an estimator for φA,B we consider the set of models

P =
{
PθA×θB×fyre

∣∣ θA ∈ ΘA, θB ∈ ΘB , fyre ∈ F
}

8

and we define φA,B to be a characteristic of a particular member PθA×θB×fyre
that can be written as a mapping from the space ΘA ×ΘB ×F to R

φA,B : ΘA ×ΘB ×F 7→ R
where:

• ΘA ⊆ RdA is the dA-dimensional parameter space of feAth

• ΘB ⊆ RdB is the d.B-dimensional parameter space of feBth

• F is an infinite-dimensional space

Therefore we are going to treat the vectors of parameters θ̂A and θ̂B as random
variables, and according to Lindley (1956)[79] we define the expected degree of
relative predictability as follows:

EΘ[HA,B(ỹre, ỹ
A
th, ỹ

B
th)] = EΘ[φA,B(θ̂A, θ̂B , fyre)]

EΘ[φA,B()] results to be again a characteristic that can be written as a mapping
from the non-parametric space F to R.

EΘ[φA,B()] : F 7→ R
Given a random sample

{
ỹire
}
i=1,...,n

, a possible choice for constructing the

estimator is the plug-in estimator of EΘ[φA,B ]

EΘn
[HA,B(ỹre, ỹ

A
th, ỹ

B
th)] = EΘn

[φA,B(θ̂An , θ̂
B
n , f̂

n
yre)] (17)

where

• EΘn
is the expectation operator over the estimators θ̂An and θ̂Bn ;

• θ̂An and θ̂Bn are the vector parameters estimator respectively for model A
and B;

• f̂nyre is any possible consistent estimator of the unconditional density func-
tion fyre plugged into the mapping φA,B .

8for simplicity we avoid to write the other known parameters ȳAth, ȳBth
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8.1 A Proposed Estimator and its Asymptotic Properties

Given two vectors of estimated parameters for the two models: θAo and θBo , I’m
going to propose an estimator

EΘn

[
φA,B(θ̂An , θ̂

B
n , f̂

n
yre)

]
such that the weak consistency of the estimator is verified as follows:

plimn→∞ EΘn

[
φA,B(θ̂An , θ̂

B
n , f̂

n
yre)

]
= EΘ

[
φA,B(θA0 , θ

B
0 , fyre)

]
(18)

where: the point θA0 is in the interior of ΘA; θB0 is in the interior of ΘB and fyre
is the true unconditional density function of yre for now on.
For the sake of simplicity, we need to change our notation to easily show the
consistency of the estimator to suggest. For the generic model M:

• L(θ̂n) the expected value of the log likelihood function
with parameters estimator.

We denote by L(θ̂n) the expected value of the log likelihood

function with a parameter estimator θ̂n(see appendix (42) and
(41)),

L(θ̂n) =

∫ ∞
−∞

fyre(yre)log
(
fyre|Ω(yre|ΩM )

)
dyre

with
ΩM = {z = 0, ȳre, ȳ

M
th , θ̂n, fyre}

• L(θ0) the expected value of the log likelihood function
with parameters estimate.

We denote by L(θ̂0) the expected value of the log likelihood
function with the parameter estimate θ0(see appendix (42) and
(41)),

L(θ0) =

∫ ∞
−∞

fyre(yre)log
(
fyre|Ω(yre|ΩM )

)
dyre

with
ΩM = {z = 0, ȳre, ȳ

M
th , θ0, fyre}

• Ln(θ̂n) a sample expectation value of the log likelihood
function with parameters estimator.

One of the drawbacks to solve is to make inference over a proba-
bility density function fyre|ΩM (yre|ΩM ) which is artificially con-
structed, through the use of two parametric probability densi-
ties and a non-parametric probability density. Consequently, no
data generated from this probability are directly available and
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this condition makes it difficult to define a consistent sample
expectation of the likelihood function.

Let
{
ỹire
}
i=1,...,n

and
{
ỹjre
}
j=1,...,n

be two random samples of

i.i.d. random variables drown from the same density distri-
bution fyre(yre) (or weakly dependent random variables. See
proposition 4.2. in Bardet, J. M., Doukhan, P., Lang, G., &
Ragache, N. (2008) [11]), therefore I propose to employ the fol-
lowing sample expectation formula of the likelihood function:

Ln(θ̂n) =
1

n

n∑
i=1

log

 1
2nh

∑n
j=1 1

(
| ỹ

j
re−ỹ

i
re

h | ≤ 1
)
feth(ỹire − ȳre|ΨM )

1

n

∑n
i= 1 feth(ỹire − ȳre|ΨM )


(19)

with

ΨM = {ȳre, ȳMth , θ̂n, f̂nyre}

where the plug-in estimator, of the density function of the eco-
nomic variable, is an uniform kernel density function f̂nyre =

1
2nh

∑n
i=1 1

(
| ỹ

i
re−yre
h | ≤ 1

)
(see appendix (54) for further de-

tails).
Notice that, the so constructed formula has three sources of un-
certainty arising from the presence of two random samples and
of the vector of random parameters.

• Ln(θ0) a sample expectation value of the log likelihood
function with parameters estimate.

The next log likelihood function differs from the previous only
because of the presence of the estimate θ0 in substitution of the
estimator θ̂n,

Ln(θ0) =
1

n

n∑
i=1

log

 1
2nh

∑n
j=1 1

(
| ỹ

j
re−ỹ

i
re

h | ≤ 1
)
feth(ỹire − ȳre|ΨM )

1

n

∑n
i= 1 feth(ỹire − ȳre|ΨM )


(20)

with

ΨM = {ȳre, ȳMth , θ0, f̂
n
yre}

moreover denoting

EΘn
[φA,B(θ̂An , θ̂

B
n , f̂

n
yre)] = EΘn

[Ln(θ̂Bn )− Ln(θ̂An )]

and
EΘ

[
φA,B(θA0 , θ

B
0 , fyre)

]
= L(θB0 )− L(θA0 )
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we can simplify the weak consistency condition (18) with the new notation.

plimn→∞ EΘn

[
Ln(θ̂Bn )− Ln(θ̂An )

]
−
(
L(θB0 )− L(θA0 )

)
= 0

plimn→∞ EΘn

[
Ln(θ̂Bn )

]
− L(θB0 )− plimn→∞ EΘn

[
Ln(θ̂An )

]
− L(θA0 ) = 0

In order to ensure that the plug-in estimator (17) is at least weakly consistent

it is sufficient that, for every model M , the estimator EΘn

[
Ln(θ̂n)

]
is at least

weakly convergent to L(θ0).

plimn→∞ EΘn

[
Ln(θ̂n)

]
= L(θ0) (21)

This convergence is ensured by generalized Slutsky theorem (see Demidenko

(2013)[34]), given the estimator Ln(θ̂n) as defined in (19), and the asymptotic
density for the vector of parameters as defined in (41).

8.2 Methodology

Formula 21 and 17 show that the expected degree of relative predictability
converges in probability to a simple difference as follows:

plimn→∞ EΘn [HA,B(ỹre, ỹ
A
th, ỹ

B
th)] = L(θB0 )− L(θA0 )

this result can be potentially exploited for building a new information criterion
however, in order to calculate EΘn [HA,B(ỹre, ỹ

A
th, ỹ

B
th)], we should solve an in-

tegral and this is usually time-consuming. For this reason, in chapter 8.3, I
replace the proposed estimator with an approximation, that converges to the
same value L(θB0 ) − L(θA0 ), that I’m going to call Predictability Information
Criterion (PIC).
In order to derive the new estimator, we will proceed by steps:

a. we compute a 2nd order functional expansion respectively of the above-
mentioned Ln(θ̂n) and L(θ̂n);

b. we compute the expectation EΘn

[
Ln(θ̂n)− L(θ̂n)

]
;

c. studying the asymptotic behavior of EΘn

[
Ln(θ̂n)− L(θ̂n)

]
, we get an al-

ternative estimator (PIC) converging in probability to the same difference
L(θB0 )− L(θA0 ).

8.3 The Predictability Information Criterion (PIC) with
Maximum Likelihood Estimators (MLE)

We compute the second order expansions of Ln(θ̂n) and L(θ̂n) centered around
θo. We then study the asymptotic properties of the two expansions.
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Ln(θ̂n) = Ln(θo)−
(
θ̂n − θo

)′
Dθ {Ln(θo)}

(
θ̂n − θo

)
+

1

2

(
θ̂n − θo

)′
D2
θ {Ln(θo)}

(
θ̂n − θo

)
+Op(n

−2)

L(θ̂n) = L(θo)−
(
θ̂n − θo

)′
Dθ {L(θo)}

(
θ̂n − θo

)
+

1

2

(
θ̂n − θo

)′
D2
θ {L(θo)}

(
θ̂n − θo

)
+Op(n

−3/2)

applying formula (59), (47) and (46)( see the appendix for more details) we get
the following results:

Ln(θ̂n) = Ln(θo)−
(
θ̂n − θo

)′
I(θo)

(
θ̂n − θo

)
+

1

2

(
θ̂n − θo

)′
D2
θ {Ln(θo)}

(
θ̂n − θo

)
+ op(1)

(22)

L(θ̂n) = L(θo)−
1

2

(
θ̂n − θo

)′
I(θo)

(
θ̂n − θo

)
+Op(n

−3/2)

We bring together the formulas and we ensemble a difference
Ln(θ̂n)− L(θ̂n) = [Ln(θo)− L(θo)]−

1

2

(
θ̂n − θo

)′
I(θo)

(
θ̂n − θo

)
+

1

2

(
θ̂n − θo

)′
D2
θ {Ln(θo)}

(
θ̂n − θo

)
+ op(1)

using (61) we simplify as follows

Ln(θ̂n)− L(θ̂n) = Ln(θo)− L(θo)−
(
θ̂n − θo

)′
I(θo)

(
θ̂n − θo

)
+ op(1)

Now we calculate the expectation in θ̂n (see appendix (41) for further details)

EΘn

[
Ln(θ̂n)− L(θ̂n)

]
= Ln(θo)− L(θo)− EΘn

[(
θ̂n − θo

)′
I(θo)

(
θ̂n − θo

)]
+ op(1)

= Ln(θo)− L(θo)−
1

n
[Trace (I(θo) · Σ) + 0] + op(1)

If the estimator θ̂n achieves the Cramér–Rao lower bound (CRLB) at θo then Σ

is equal to the inverse of the Fisher’s Information Matrix Σ = [I(θo)]
−1

, where
I(θo) is the Fisher’s matrix calculated in θo.
The expression can be simplified as follows:

= Ln(θo)− L(θo)−
d

n
+ op(1)
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where d is the number of parameters of the model.

If θ̂n does converge in probability to θo, as it is supposed to do, looking at
equation (22) we can easily verify, by Slutsky theorem, that:

Ln(θ̂n)− Ln(θo) = op(1)

consequently, we get the following expression:

EΘn

[
Ln(θ̂n)− L(θ̂n)

]
= Ln(θ̂n)− L(θo)−

d

n
+ op(1) (23)

by generalized Slutsky theorem (see Demidenko (2013)[34]) and delta method
it is possible to demonstrate the following convergence:

plimn→+∞ EΘn

[
Ln(θ̂n)− L(θ̂n)

]
= 0 (24)

using both results 23 24, we can get the following asymptotic result:

plimn→+∞

[
Ln(θ̂n)− d

n

]
= L(θo) (25)

on the base of this result we get a simplified alternative estimator of EΘn
[HA,B(ỹre, ỹ

A
th, ỹ

B
th)]

that we call Predictability Information Criterion (PIC) with maximum likeli-
hood estimtor (MLE).

PICMLE
A,B (ỹre, ỹ

A
th, ỹ

B
th) = Ln(θ̂Bn )− Ln(θ̂An ) +

dA

n
− dB

n
(26)

In fact, with the asymptotic result (25)), it’s easy to see that both PICMLE
A,B (ỹre, ỹ

A
th, ỹ

B
th)

and HA,B(ỹre, ỹ
A
th, ỹ

B
th)] converge in probability to the same limit L(θB0 )−L(θA0 ).

An explicit formulation of PIC is:

PICMLE
A,B (ỹre, ỹ

A
th, ỹ

B
th) =

1

n

∑n
i=1 log

(
feth(ỹire − ȳre|ΨB)

∑n
i= 1 feth(ỹire − ȳre|ΨA)

feth(ỹire − ȳre|ΨA)
∑n
i= 1 feth(ỹire − ȳre|ΨB)

)
+
dA

n
− dB

n

(27)

Where:

• dA is the number of parameters of the model A.

• dB is the number of parameters of the model B.

• n is the number of data in the sample

• ΨA = {ȳre, ȳAth, θ̂An , f̂nyre}

• ΨB = {ȳre, ȳBth, θ̂Bn , f̂nyre}

According to 6.1, if:

PICMLE
A,B > 0⇒ the prediction of model A is expected to be more uncertain

with respect to model B
PICMLE

A,B < 0⇒ the prediction of model B is expected to be more uncertain
with respect to model A

22



9 The Predictability Information Criterion (PIC)
with Quasi-Maximum Likelihood Estimators
(QMLE)

Give a real-valued diffusion process endowed with the following univariate stochas-
tic differential equation:

dXt = b(Xt, θ)dt+ σ(Xt, θ) dWt (28)

with the vector of parameters θ, it is possible that the transition probability
density does not have a closed form expression. Consequently, the maximum
likelihood estimator of the vector of parameters θ cannot always be achievable.
In these cases, quasi-maximum likelihood procedures try to fix the issue estimat-
ing the vector of parameters by the maximization of an approximated likelihood
function.
The Quasi-Maximum Likelihood Estimators (QMLE) are built such that they
are consistent and asymptotically normal. However such estimators are less
efficient of the maximum likelihood estimators. In order to compute the PIC,
implementing the quasi-maximum likelihood estimators, I’m going to adopt a
procedure that has been already used by Yoshida (1992) [110], Genon-Catalot
and Jacod (1993)[47], and Kessler (1997) [66] to estimate stochastic differential
equations. In particular, I consider the version implemented in Iacus (2016)
[60],Brouste et al. (2014) [20], Iacus (2011) [102] (pag 207), De Gregorio (2012)
[32], which is obtained by discretization of the continuous time stochastic dif-
ferential equation (28)( Euler-Maruyama scheme) assuming that the increments
are conditionally independent Gaussian random variables.
The method splits the vector of parameters θ into two parts, since some of them
converge at different rate 9. θ = (α, β) in particular the only q parameters ap-
pearing in σ can be estimated efficiently, where: α = (α1, . . . , αp)

′ ∈ Θp ⊂ Rp
and β = (β1, . . . , βq)

′ ∈ Θq ⊂ Rq.
Given the random sample

{
Xi
t

}
i=1,...,n+1

observed only at n +1 equidistant

discrete times ti , such that, if the process Xt is ergodic, it is possible to demon-
strate that the proposed Quasi Maximum Likelihood Estimator (QMLE) is a
consistent estimator of θ0 and asymptotically Gaussian with rate of convergence
given by ϕ(n)−1/2

ϕ(n)−1/2
(
θ̂n − θo

)
d−→ N

[
0, I(θo)

−1
]

(29)

where:

• ϕ(n) =

(
1

n·hn
Ip 0

0 1
nIq

)
• I(θo) is the Fisher’s matrix calculated in θo

9To be consistent with the definition of the parameter spaces provided in chapter8, I
consider the dimension of the vector of parameters, for the generic model M , to be equal
to the sum of the dimensions of α and β, meaning that dM = pM + qM , where: dM is the
dimension of the parameters in model M; pM is the dimension of the vector of parameters
called α in model M , qM is the dimension of the vector of parameters called β in model M .
Coherently respect to what done so far, I do not indicate the apex M anymore, considering it
implicit.
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• Ip is the identity matrix of order p

• Iq is the identity matrix of order q

• hn time interval between each consecutive pairs of data points observed
in the sample such that: hn = ti − ti−1 < ∞ for 1 ≤ i ≤ n. This value
decreases when the number of observations, n, increases.

Proceeding in a similar manner to chapter 8.3, we can derive an equivalent
representation of the predictability information criterion in the presence of the
QMLE.

EΘn

[
Ln(θ̂n)− L(θ̂n)

]
= Ln(θo)−L(θo)−

[
Trace

(
I(θo) · ϕ(n) · I(θo)

−1
)

+ 0
]
+op(1)

= Ln(θo)− L(θo)− [Trace (ϕ(n) · Id)] + op(1)

= Ln(θo)− L(θo)−
p

n · hn
− q

n
+ op(1) (30)

We call Predictability Information Criterion (PIC) with Quasi-Maximum Like-
lihood Estimators (QMLE) the following expression

PICQMLE
A,B (ỹre, ỹ

A
th, ỹ

B
th) = Ln(θ̂Bn )−Ln(θ̂An ) +

pA

n · hn
+
qA

n
− pB

n · hn
− q

B

n
(31)

An explicit formulation of PIC with Quasi-Maximum Likelihood Estimators
(QMLE) is:

PICQMLE
A,B (ỹre, ỹ

A
th, ỹ

B
th) =

1

n

∑n
i=1 log

(
feth(ỹire − ȳre|ΨB)

∑n
i= 1 feth(ỹire − ȳre|ΨA)

feth(ỹire − ȳre|ΨA)
∑n
i= 1 feth(ỹire − ȳre|ΨB)

)
+

pA

n · hn
+
qA

n
− pB

n · hn
− qB

n

(32)

where:

• pA is the number of parameters inside σ(Xt, θ) of the model A.

• qA is the number of remaining parameters of the model A.

• pB is the number of parameters inside σ(Xt, θ) of the model B.

• qB is the number of remaining parameters of the model B.

• ΨA = {ȳre, ȳAth, θ̂An , f̂nyre}

• ΨB = {ȳre, ȳBth, θ̂Bn , f̂nyre}

• n is the number of data in the sample

• plimn→+∞n · hn =∞

• plimn→+∞n · h2
n = 0
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• plimn→+∞hn = 0

according to 6.1, if:

PICQMLE
A,B > 0⇒ the prediction of model A is expected to be more uncertain

with respect to model B.
PICQMLE

A,B < 0⇒ the prediction of model B is expected to be more uncertain
with respect to model A.

10 Oil Price Modeling

Price modeling of commodities is a very complex and difficult task since it needs
to consider contemporaneously both the high complexity of the price discovery
in the global market (in recent years commodities become a commercial asset
of money managers worldwide) (Geman, 2005[46]) and macroeconomic factors
they depend on (there are often many empirical studies providing conflicting
results about the dependency structure among variables).
Modeling these peculiar prices has become a major objective of those who in-
tend to use, or create, complex derivatives, now become widely used in the
industrial production, for both speculative and investment purposes. Recently,
the economic literature has started to address the problem of modelling crude
oil prices again.
Much of the early literature considers the price of crude oil as affected by a
single risk factor (single factor model): Paddock et al., 1988[85]; Brennan and
Schwartz, 1985[18]; McDonald and Siegel, 1985[82]). They usually define the
dynamics of prices as due to a Geometric Brownian Motion (GBM).
The choice comes from the analogy that characterises the movement of these
prices with those of shares on the capital markets. Choosing a Geometric Brow-
nian Motion means assuming that oil prices are expected to grow exponentially,

25



at a constant rate over time, and their variance to increase in proportion to time.
However, many empirical studies suggest that its implementation involves draw-
backs both in the descriptive power, and because it might induce mispricing of
derivative securities.
GBM seems to counter the economic theory of the commodities, according to
which the distance of the spot price from the theoretical long term price (in-
trinsic value) should affect the volumes of productions. For example, when the
oil price is above the theoretical level, there should be an incentive to increase
the production which reduces prices, up to the theoretical level, in the long run.
When the price is lower than the theoretical level, there should be an incentive
to reduce production and to wait for the rise of oil prices in the long run. In
fact, a reduced oil supply on the market generally determines a rise in prices
until it hooks the theoretical, in the long-run. So, although there is a temporary
permissible misalignment, due to the stochastic perturbations, it is expected a
well defined dynamics in the long run.
As remembered by Geman (2005)[46], two major commodity indexes in the 90’s
introduced a mean-reverting drift, in the stochastic differential equation, for
driving oil price dynamics in their simulations. Moreover, many empirical stud-
ies supported this hypothesis: Schwartz (1997) [93] Pindyck (1999, 2001)[87][88];
Laughton and Jacoby 1993, 1995[72][73]; Cortazar and Schwartz 1994[27]; Dixit
and Pindyck 1994[36]; Smith and McCardle 1999[99]; Dias 2004[35]; Begg and
Smit 2007[12]; Willigers and Bratvold 2009[109]).
Note that, employing a GBM to model prices, that actually follow a mean-
reverting dynamic, means overestimating the degree of risk related to future
prices (See B. Jafarizadeh and Bratvold 2012 [62]).
That’s why it is usually preferred to employ a mean reverting process which al-
lows a better description of the oil market price dynamics (Pindyck, 2001 [88]).
Over the years, an increasing number of increasingly complex models has be-
come the subject of investigation for economists. Discovering new stochastic
processes, best suited to fit the data observed in the markets, is one of the
primary objectives of banks and financial institutions that are seeking to build
sophisticated financial instruments. The most successful models are those hav-
ing two or three stochastic factors (Gibson and Schwartz (1990)[48], Cortazar
and Schwartz (1994)[27], Schwartz (1997)[93], Pilipovic (1998) [86], Baker et al.
(1998)[10], Hilliard and Reis (1998)[54], Schwartz and Smith (2000)[92], Cor-
tazar and Schwartz (2003) [28]) or a mixture o stochastic processes such as those
with jumps.
The need to introduce additional risk factors is mainly due to the stochastic
nature of the long-term price. In general, more advanced models often make
use of a greater number of parameters to be estimated. However, this increase
can effectively improve the fitting properties of the model even without actually
describing the right process. This results in misleading indications about the
performance of the model to predict the future data. Therefore, in general, the
increase of the degree of adherence of the model to the data is not necessarily a
positive feature, from a statistical point of view. This big hidden drawback of
such models is called the overfitting problem10. .

10There is overfitting when the model tends to adapt to the sample of data instead of the
model that generates such a data.
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10.1 Geometric Brownian Motion (GBM)

The Geometric Brownian Motion (GBM) is a continuous time stochastic pro-
cess frequently used in finance to model the dynamic of asset prices Xt. The
stochastic differential equation describing the process is constituted by the sum
of a deterministic and a stochastic part:

dXt = µXt dt+ σXt dWt

whereWt is a Wiener process, µ is the percentage drift and σ is the instantaneous
standard deviation. Some peculiar characteristics of the process are: 1) the
variance is linearly increasing in time to a constant value σ2; 2) the expected
returns of oil price is constant and independent of the value of the process
E(dX/X) = αdt. The Geometric Brownian Motion (GBM) has mathematical
properties that make it very easy to implement. For example, it admits a closed
form analytical solution

ln

(
Xt

X0

)
=

(
µ− σ2

2

)
t+ σWt

with a normal probability density function.

ln

(
Xt

X0

)
∼ N

[
(µ− σ2/2)t, σ2t

]
Some authors, such as Dixit (1992), believe that the GBM is a process that
also guarantees further advantages, from a model-fitting point of view and when
there is irreversibility of the risky investment plans. Whereas for Pindyck (1999)
[87] the GBM doesn’t provide meaningful results.

10.2 Ornstein–Uhlenbeck process (OU)

The Ornstein–Uhlenbeck process is a continuous-time stochastic process used
to model random variables that tend to oscillate around a trend value (mean
reversion).
This process could be considered as an extension, to a continuous variable, of
a discrete autoregressive process of order 1 AR(1). The stochastic differential
equation is

dSt = (µ− κSt) dt+ σ dWt

κ > 0, µ and σ > 0.
This process is not immediately applicable to asset prices because it does not
exclude negative price values. Therefore Dixit and Pindyck (1994) [36] have
proposed to include the change in prices rather than price levels.
Defining the asset prices again as Xt, we are allowed to interpret St = ln(Xt)
for modelling price differences. It admits the following closed form solution:

ln

(
Xt

X0

)
=
µ

κ
+
(

ln (X0)− µ

κ

)
e−κt − ln (X0) + σe−kt

∫ t

0

eksdWs

we can calculate the transition density function

ln

(
Xt

X0

)
∼ N

[
µ

κ
+
(

ln (X0)− µ

κ

)
e−κt − ln (X0) ,

σ2

2κ

(
1− e−2κt

)]
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11 Comparison of GBM and OU for Crude Oil
Market - Empirical evidence

We are going to provide a practical example of the application of the Predictabil-
ity Information Criterion (PIC). The example consists of determining which
stochastic process, between GBM and OU, produces less uncertain forecasts for
daily Cushing, OK WTI Spot Price FOB (Dollars per Barrel), according to the
proposed criteria PIC, for each possible scenario ȳre and forecasting horizon
s. Historical price data, provided by EIA, start from 02/01/1986 and stop at
21/03/2016.
We define {ỹre(t) : t ∈ T} to be a semimartingale process, consisting in the
log-return of the WTI spot price from present time 0 to time t.

ỹre(t) = ln

(
Xt

X0

)
Fixing a time horizon s and assuming that the price process is observed on an
equally-spaced time line t = -n,. . . ,-2,-1,0,1, 2,. . . ,s,... (with s < n). We define
the sample of the log returns with time horizon s as a set{

ln

(
Xs(i+1)

Xi·s

)}
i=−1,...,−n

of i.i.d., (or weakly dependent. See proposition 4.2. in Bardet, J. M., Doukhan,
P., Lang, G., & Ragache, N. (2008) [11]), random variables with density function
fyre(s).
The analysis employs a realisation of this sample for both calculating PIC and
the estimates of the parameters of the two models.
We also define {ỹGBMth (t) : t ∈ T} and {ỹOUth (t) : t ∈ T} to be two parametric
processes describing the behavior of the log-return of the WTI Spot Price from
time 0 to time t. The first one assumes the crude oil spot price dynamically
changes according to a geometric Brownian motion (GBM), the second one
according to an Ornstein–Uhlenbeck process (OU).
We proceed with the estimation of the two stochastic models parameters making
use of ”yuima” library available in R. This library provides the parameters of
the model based on the Quasi-Maximum Likelihood Estimator (QMLE) (Iacus
(2016) [60],Brouste et al. (2014) [20], Iacus (2011) [102] pag 207).

Once we computed the parameters and fixed a time horizon s, we can calculate
the PIC value of the two processes, using the logarithmic rates of returns, for
each given value of ȳre (unknown predictable part of the log returns) as follows:
for the Geometric Brownian Motion:

ỹGBMth (s) = ln

(
Xs

X0

)
=

(
µ− σ2

2

)
s︸ ︷︷ ︸

prediction

+ σWs︸︷︷︸
prediction error

for the Ornstein–Uhlenbeck process:

ỹOUth (s) = ln

(
Xs

X0

)
=
µ

κ
+
(

ln (X0)− µ

κ

)
e−κs − ln (X0)︸ ︷︷ ︸

prediction

+σe−ks
∫ s

0

ekjdWj︸ ︷︷ ︸
prediction error
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Figure 1: The coloured spaces highlight the less uncertain model for different
states of nature ȳre and time horizons s. The horizontal axis displays some
possible scenarios for the predictable part ȳre, of the future logarithmic rate of
return, while the vertical axis shows the time horizon s of the forecast.

you can notice that the two processes can be similarly expressed as we have
done in formulas (7) (8).
Figure 11 shows what model should be selected according to PICQMLE (see
(5)). In the light of our result reported below, we are confident that Orn-
stein–Uhlenbeck process provides better result in shorter time periods and just
in the case of a strong trend of the crude oil price. The Geometric Brownian
motion, despite its parsimony and simplicity, can perform better than OU for
time horizons longer than 20 days and in the case of a flat or almost flat price
trend.

a. With a 10 days time horizon ∀ ȳre ∈ (−0, 465, 0, 235) PICQMLE
GBM,OU > 0⇒

OU has expected to be more uncertain with respect to GBM model

b. With a 20 days time horizon ∀ ȳre ∈ (−0, 865, 0, 43) PICQMLE
GBM,OU < 0 ⇒

OU has expected to be more uncertain with respect to GBM model

c. With a 30 days time horizon ∀ ȳre ∈ (−0, 99, 0, 99) PICQMLE
GBM,OU < 0 ⇒

OU has expected to be more uncertain with respect to GBM model

d. With a 40 days time horizon ∀ ȳre ∈ (−0, 99, 0, 99) PICQMLE
GBM,OU < 0 ⇒

OU has expected to be more uncertain with respect to GBM model
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12 Economic interpretation and final remarks

The nature of the underlying economic phenomena has broad implications for
the choice of the stochastic model. For instance, in the work ”A Microeconomic
Approach to Diffusion Models for Stock Prices” (Föllmer and Schweizer (1993)
[45]), it has been argued that, under some general conditions, the two analyzed
processes of the example, GBM and OU, can both model the behavior of the
equilibrium price. The key element is the concentration of two categories of
agents in the market: 1) information traders (fundamentalists), who believe
that the fundamentals drive the price; 2) noise traders, that instead respond to
their own expectations.
In fact, the study suggests that the presence of different types of agents in
the market has an effect on the resulting equilibrium price process. If only
fundamentalist traders are active on the market, the price process, induced
by information traders, behaves like an Ornstein-Uhlenbeck process around a
time dependent level. If only noise traders are active on the market, the price
process is induced by noise traders and it would be a geometric Brownian mo-
tion. In the light of this theoretical framework, for long-run forecasts, operators
seem to behave predominantly as noise traders. Therefore GBM reasonably is
a good choice. For short-run forecasts, operators appear to act mainly as in-
formed traders, as long as it is expected a strong market change in price (high
|ȳre|). Under more stable market expectations (low |ȳre| ) operators seem to be-
have predominantly as noise traders and therefore geometric Brownian motion
provides again better results. Strictly speaking, the informed traders mainly
intervene on the market when expectations turn out to be too high or too low,
meaning that mean reversion appears only when market expectation ȳre exceeds
certain thresholds. Deeper conclusions cannot be derived from the experiment
since PIC does not ensure that the selected stochastic process is the right one.

13 Conclusion

In this paper, I provided a methodology to select alternative pricing models
when prices, or log prices, are modelled as a stochastic process called semi-
martingale. I also recalled implicitly that, according to the general version of
the Fundamental Theorem of Asset Pricing in continuous time (Delbaen and
W. Schachermayer (1994)[33]), the proposed selection criterion is suitable when
prices are in equilibrium in a market that does not admit arbitrage opportuni-
ties.
The predictability information criterion (PIC) is inspired by the Akaike’s In-
formation Criterion as it selects the model that most closely matches to that
has generated the data by calculating and comparing distances in terms of
Kullback-Leibler divergences. The PIC, unlike other selection criteria, is de-
signed to compare models by their ability to simulate the only predictable part
of the observed variable.
The proposed approach allows estimating the Kullback-Leibler divergence de-
spite the fact that this predictable part, which has been named ȳre, is not
directly observable. By parametrizing the estimate of the Kullback-Leibler dis-
tance to this value ȳre and the time horizon s of the prediction, we are allowed
to select a model for each possible scenario. I derived the predictability infor-
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mation criterion (PIC) following three steps: 1) conditioning, for each model M,
the employed probability density functions to ΩM (see 12), in order to exclude
that unpredictable factors can spoil the model selection procedure; 2) calcu-
lating, for each model M to compare, the Kullback-Leibler divergence between
the theoretical model and the data generating process (as if it is known); 3)
calculating an asymptotically unbiased estimator of this divergence. The paper
can be ideally divided into three parts: the first part is an overview and the
historical literature on modelling methodologies and pricing model selection. In
particular, I explained the reasons why prices are modelled as semimartingale
and what are the major types of information criteria that have been proposed
over the years. The second part is devoted to the technical explanation of the
proposed Predictability Information Criteria (PIC). Two versions are provided:
1) the first criterion is suitable for stochastic models whose parameters are esti-
mated with the maximum likelihood technique; 2) a second version is presented
for models estimated with a quasi-maximum likelihood procedure, as explained
in Iacus (2011) [102]. The third part was, instead, dedicated to an application
of the method to compare and select alternative stochastic models (Geometric
Brownian Motion and Ornstein-Uhlenbeck) applied to data of the WTI spot
prices. We made the selection for each possible scenario of ȳre and time horizon
of the forecast.
The advantages of the presented method are mainly three:
1) to allow a comparison between two models for each possible scenario ȳre and
for each possible time horizon s; 2) to compare the model uncertainty of predic-
tions instead of the risks; 3) to evaluate models limiting the overfitting problem.
The PIC can be a guide for understanding what model should be selected when
the process can be partially predictable. Therefore it can be a tool particularly
useful for practitioners, especially for pricing derivatives and risk quantification
(e.g. in order to choose the best diffusion process for the quantification of VaR
with Monte Carlo simulations).
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COEFFICIENTS

10 days time horizon

Coefficients estimates of the GBM process
µ σ

Estimates 0.2326407 0.6281890
Std. Error 0.19675840 0.01633561

starting values
µ 1
σ 1

Coefficients estimates of the OU process
µ κ σ

Estimates 1.5312540 0.4230507 1.0000000
Std. Error 1.66689142 0.46509013 0.09826974

starting values
µ 1
κ 1
σ 1

20 days time horizon

Coefficients estimates of the GBM process
µ σ

Estimates 0.2978370 0.7057621
Std. Error 0.24967004 0.02597167

starting values
µ 1
σ 1

Coefficients estimates of the OU process
µ κ σ

Estimates 1.9642247 0.5430572 1.0000000
Std. Error 1.87462682 0.52325980 0.07505158

starting values
µ 1
κ 1
σ 1

30 days time horizon

Coefficients estimates of the GBM process
µ σ

Estimates 0.3576538 1.0000000
Std. Error 0.37993447 0.06869774
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starting values
µ 1
σ 1

Coefficients estimates of the OU process
µ κ σ

Estimates 2.3919002 0.6613344 0.8761545
Std. Error 1.77896603 0.49600442 0.04854567

starting values
µ 1
κ 1
σ 1

40 days time horizon

Coefficients estimates of the GBM process
µ σ

Estimates 0.4515039 0.8296112
Std. Error 0.33176734 0.04302128

starting values
µ 1
σ 1

Coefficients estimates of the OU process
µ κ σ

Estimates 2.8853790 0.7859244 0.9417678
Std. Error 2.00021662 0.55811807 0.06178878

starting values
µ 1
κ 1
σ 1
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APPENDIX

For the sake of clarity we redefine the theoretical variables and the information
sets without specifying the model M they belong to:

Ω = {z = 0, ȳre, ȳth, θ, fyre}

Ψ = {ȳre, ȳth, θ, fyre}

calculation of fyre(yre|Ψ)

fyre(yre|Ψ) = fere(yre − ȳre|Ψ)
∣∣1∣∣ (33)

calculation of fyth(yth|Ψ)

fyth(yth|Ψ) = feth(yth − ȳth|Ψ)
∣∣1∣∣ (34)

calculation of fZ(z|Ψ)

Just by using the definition of conditional density function, we can calculate the
density as follows

fZ(z|Ψ) =

∫ ∞
−∞

feth(eth|Ψ) · fere(eth − z|Ψ)deth

if z = 0 we get

fZ(z = 0|Ψ) =

∫ ∞
−∞

feth(eth|Ψ) · fere(eth|Ψ)deth (35)

calculation of fyre|Ω(yre|Ω)

fyre|z,Ψ(yre|z,Ψ) =
fyre,z|Ψ(yre, z|Ψ)

fz(z|Ψ)
=

fere,eth(yre − ȳre, z + yre − ȳre|Ψ)

∣∣∣∣1 0
0 1

∣∣∣∣∫∞
−∞ feth(eth|Ψ) · fere(eth − z|Ψ)deth

if z = 0 we get

fyre|Ω(yre|Ω) = fyre|Ω(yre|z = 0,Ψ) =
fere,eth(yre − ȳre, yre − ȳre|Ψ)∫∞
−∞ feth(eth|Ψ) · fere(eth|Ψ)deth

fere(yre − ȳre|Ψ) · feth(yre − ȳre|Ψ)∫∞
−∞ feth(eth|Ψ) · fere(eth|Ψ)deth

(36)

calculation of fyth|Ω(yth|Ω)

By using the same procedure as in formula (36) we get

fyth|z(yth|z,Ψ) =

fere(yth − ȳth − z|Ψ) · feth(yth − ȳth|Ψ)

∣∣∣∣0 1
1 0

∣∣∣∣∫∞
−∞ feth(eth|Ψ) · fere(eth|Ψ)deth
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if z = 0 we get

fyth|Ω(yth|Ω) = fyth|Ω(yth|z = 0,Ψ) =
fere(yth − ȳth|Ψ) · feth(yth − ȳth|Ψ)∫∞
−∞ feth(eth|Ψ) · fere(eth|Ψ)deth

(37)

calculation of Hres(ỹre, ỹth)

we want to calculate

Hres(ỹre, ỹth) = Eyre,yth|Ω
[
log

(
pyre,yth|Ω(yre, yth|Ω)

pyre|Ω(yre|Ω)pyth|Ω(yth|Ω)

)]
by discretization of the continuous variables (ỹre and ỹth) and using Bayes for-
mula we get the following expression:

pyre,yth|Ω(yire, y
j
th|Ω) = pyre|yth,Ω(yire|y

j
th,Ω)pyth|Ω(yjth|Ω)

using the discretized variables yire to yjth conditioned to the information set Ω
we can write the terms defined in 7 8 as follows:

for every i and j
eire = ejth

simplifying we get
yire − ȳre = yjth − ȳth

yire = ȳre + yjth − ȳth
this means that i = j and the probability distribution pyre|yth,Ω(yire|yith,Ω) is
totally concentrated at the point yire = ȳre + yith − ȳth

pyre|yth,Ω(yire|yith,Ω) =
∫ i∆+∆

i∆
δ(yre−(ȳre+y

i
th−ȳth))dyre =

{
1 if yire = ȳre + yith − ȳth
0 if yire 6= ȳre + yith − ȳth

where δ is the Dirac delta.
Thus imposing yire = ȳre + yith − ȳth we can write
pyre,yth|Ω(yire, y

i
th|Ω) = pyre|yth,Ω(yire|yith,Ω)pyth|Ω(yith|Ω) = pyth|Ω(yith|Ω)

=
∫ i∆+∆

i∆
fyth|Ω(yth|Ω)dyth = fyth|Ω(yith|Ω)∆

It follows that

MI(yre, yth|Ω) =
∑
i pyre,yth|Ω(yire, y

i
th|Ω)log(

pyre,yth|Ω(yire, y
i
th|Ω)

pyre|Ω(yire|Ω)pyth|Ω(yith|Ω)
) =

=
∑
i pyth|Ω(yith|Ω)log(

pyth|Ω(yith|Ω)

pyre|Ω(yire|Ω)pyth|Ω(yith|Ω)
)

=
∑
i pyth|Ω(yith|Ω)log(

1

pyre|Ω(yire|Ω)
)

=
∑
j pyth|Ω(yjth|Ω)log(

1

pyre|Ω(ȳre + yjth − ȳth|Ω)
)

=
∑
i fyth|Ω(yith|Ω)∆log(

1

fyre|Ω(ȳre + yith − ȳth|Ω)∆
)
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Letting ∆→ 0 and considering both formulas (36), (37) we have
= −

∫∞
−∞ fyth|Ω(yth|Ω)log(fyth|Ω(yth|Ω))dyth−lim∆→0log(∆)

∑
i fyth|Ω(yith|Ω)∆

= −
∫∞
−∞ fyth|Ω(yth|Ω)log(fyth|Ω(yth|Ω))dyth−

∫∞
−∞ fyth|Ω(yth|Ω)dyth·lim∆→0log(∆)

= −
∫ ∞
−∞

fyth|Ω(yth|Ω)log(fyth|Ω(yth|Ω))dyth − lim∆→0log(∆) (38)

Taking formula(37) we are allowed to write
Hres(ỹre, ỹth) =

−
∫∞
−∞

fere(yth − ȳth|Ψ) · feth(yth − ȳth|Ψ)∫∞
−∞ feth(eth|Ψ) · fere(eth|Ψ)deth

log

(
fere(yth − ȳth|Ψ) · feth(yth − ȳth|Ψ)∫∞
−∞ feth(eth|Ψ) · fere(eth|Ψ)deth

)
dyth − lim∆→0log(∆)

This formula can be computed for any generic theoretical model A and B co-
herently with the previous definitions (see equations 7 and 8).

For model A we write:
Hres(ỹre, ỹ

A
th) =

−
∫∞
−∞

fere(yAth − ȳAth|ΨA) · feAth(yAth − ȳAth|ΨA)∫∞
−∞ feAth(eAth|ΨA) · fere(eAth|ΨA)deAth

log

(
fere(yAth − ȳAth|ΨA) · feAth(yAth − ȳAth|ΨA)∫∞
−∞ feAth(eAth|ΨA) · fere(eAth|ΨA)deAth

)
dyAth − lim∆→0log(∆)

For model B we write:
Hres(ỹre, ỹ

B
th) =

−
∫∞
−∞

fere(yBth − ȳBth|ΨB) · feBth(yBth − ȳBth|ΨB)∫∞
−∞ feBth(eBth|ΨB) · fere(eBth|ΨB)deBth

log

(
fere(yBth − ȳBth|ΨB) · feBth(yBth − ȳBth|ΨB)∫∞
−∞ feBth(eBth|ΨB) · fere(eBth|ΨB)deBth

)
dyBth − lim∆→0log(∆)

Therefore using the expectation operator we get for the generic model M the
following expression

HM
res(ỹre, ỹ

M
th ) = −EyMth |ΩM

[
log
(
fyMth |ΩM (ỹMth |ΩM )

)]
− lim∆→0log(∆)

with

fyMth |ΩM (yMth |ΩM ) =
fere(yMth − ȳMth |ΨM ) · feMth(yMth − ȳMth |ΨM )∫∞
−∞ feMth(eMth |ΨM ) · fere(eMth |ΨM )deMth

Study of the density fyMth |ΩM (yMth |ΩM)

We wonder whether it is possible to make inference about the parameter θM of
the probability density function fyMth |ΩM (yMth |ΩM ) despite the fact that we don’t
own data from such distribution.
We can work around the problem by finding a sufficient statistic which can
allows to make inference with the available data ỹre|ΨM . In this regard we
study the relations between ỹMth |ΩM , ỹre|ΩM and ỹre|ΨM .
We define the following random variables first:
be

• ỹMth |ΩM a random variable with density function fyMth |ΩM (yMth |ΩM )

• ỹMth |ΨM a random variable with density function fyMth (yMth |ΨM )

• ỹre|ΩM a random variable with density function fyre|ΩM (yre|ΩM )

• ỹre|ΨM a random variable with density function fyre(yre|ΨM )
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relation between ỹMth |ΩM and ỹre|ΩM

Now we wonder if there exist a continuous function g() such that we are allowed
to write:

ỹMth |ΩM = g(ỹre|ΩM )

and how can we calculate the density

fyMth |ΩM (g(yre|ΩM ))

We first notice that under ΩM

ỹre|ΩM − ȳre = ỹMth |ΩM − ȳMth
That is sufficient to demonstrate the existence of the continuous function g().

ỹMth |ΩM = g(ỹre|ΩM ) = ỹre|ΩM − ȳre + ȳMth

The existence and the linearity of the function g() in yre|ΩM let us transform
the original density function such that

fyMth |ΩM (yMth |ΩM ) = fyMth |ΩM (g(yre|ΩM )) = fyre|ΩM (yre|ΩM )

however by formula (13) we can also write

fyMth |ΩM (yMth |ΩM ) = fyMth |ΩM (g(yre|ΩM )) =
fere(yre − ȳre) · feMth(yre − ȳre|ΨM )∫∞
−∞ feMth(eth|ΨM ) · fere(eth)deth

relation between ỹMth |ΩM , ỹre|ΩM and ỹre|ΨM

Now we wonder if there exist a continuous function h() such that we are allowed
to write :

ỹMth |ΩM = g(ỹre|ΩM ) = h(ỹre|ΨM ) (39)

and how can we calculate the density

fyMth (h(yre|ΨM ))

Once again, by transformation of the original density function we get

fyMth |ΩM (h(yre|ΨM )) = fyre(yre|ΨM ) · 1∣∣∣ d
dyre

(h(yre|ΨM ))
∣∣∣

By formula (33) we can write

fyMth |ΩM (h(yre|ΨM )) = fere(yre − ȳre|ΨM ) · 1∣∣∣ d
dyre

(h(yre|ΨM ))
∣∣∣

imposing
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1∣∣∣ d
dyre

(h(yre|ΨM ))
∣∣∣ =

feMth(yre − ȳre|ΨM )∫∞
−∞ feMth(eth|ΨM ) · fere(eth|ΨM )deth

we get the following result

fyMth |ΩM (yMth |ΩM ) = fyMth |ΩM (g(yre|ΩM )) = fyMth |ΩM (h(yre|ΨM )) = fere(yre − ȳre|ΨM ) ·
feMth(yre − ȳre|ΨM )∫∞

−∞ feMth(eth|ΨM ) · fere(eth|ΨM )deth

(40)

Consequences on the calculation of Hres(ỹre, ỹ
M
th )

By focusing our attention on the expectation contained inside Hres(ỹre, ỹth)
(see formula (14)) we notice that the relation 39 together with the law of the
unconscious statistician let us simplify the formula as follows:

Ef
yM
th

|ΩM

[
log

(
1

fyMth |ΩM (yMth |ΩM )

)]
dyMth =

= Eỹre

[
log

(
1

fyMth |ΩM (h(yre|ΨM ))

)]
dyre =

=

∫ ∞
−∞

fyre(yre|ΨM )log

(
1

fyMth |ΩM (h(yre|ΨM ))

)
dyre =

=

∫ ∞
−∞

fyre(yre|ΨM )log

 1

feMth(eth|ΨM ) · feMth(yre − ȳre|ΨM )∫∞
−∞ feMth(eth|ΨM ) · fere(eth|ΨM )deth

 dyre =

using formulas (33) and (34)

=

∫ ∞
−∞

fyre(yre)log

 1

fyre(yre) · feMth(yre − ȳre|ΨM )∫∞
−∞ fyre(yre) · feMth(yre − ȳre|ΨM )dyre

 dyre

notice that
fyre(yre|ΨM ) = fyre(yre) ∀M and

fyre|ΩM (yre|ΩM ) =
fyre(yre) · feMth(yre − ȳre|ΨM )∫∞

−∞ fyre(yre) · feMth(yre − ȳre|ΨM )dyre
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Building the Estimator of HA,B

The Maximum Likelihood Estimator (MLE) θ̂

The Maximum Likelihood estimator θ̂n for the parameter of the model M con-

verges in distribution to a normal with expected value θo and variance
Σ

n

θ̂n
d−→ N

[
θo,

Σ

n

]
(41)

Density f̂nyre

Let (ỹ1
re, ..., ỹ

n
re) be a random sample of i.i.d. random variables drawn from

an unknown distribution with unknown density function fyre(yre) or a weakly
dependent (see proposition 4.2. in Bardet, J. M., Doukhan, P., Lang, G., &
Ragache, N. (2008) [11]).
It is proposed to employ a uniform kernel density estimator

f̂nyre =
1

2nh

n∑
i=1

1
(
| ỹ
i
re − yre
h

| ≤ 1
)

where:

• 1
(
| ỹ

i
re−yre
h | ≤ 1

)
is an indicator function

• h > 0 is a smoothing parameter called the bandwidth

Study of the Asymptotic properties of L(θ̂n)

Definition of L(θ̂n)

We denote by L(θ̂n) the expected value of the log likelihood function with a ran-

dom parameter θ̂n. We shall consider it to be a function of the aforementioned
estimator θ̂n.

L(θ̂n) = EyMth |ΩM

[
log
(
fyMth |Ω(yth|Ω)

)]
= Eyre

[
log
(
fyre|Ω(yre|Ω)

)]
∫ ∞
−∞

fyre(yre)log
(
fyre|Ω(yre|Ω)

)
dyre

(42)

with

ΩM = {z = 0, ȳre, ȳ
M
th , θ̂n, fyre}
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Approximation of L(θ̂n) around θo

L(θ̂n) ≈ L(θo) +
(
θ̂n − θo

)′
Dθ {L(θo)}+

1

2

(
θ̂n − θo

)′
D2
θ {L(θo)}

(
θ̂n − θo

)
= L(θo)−

1

2

(
θ̂n − θo

)′
I(θo)

(
θ̂n − θo

)
(43)

Expectation of L(θ̂n)

EΘ

[
L(θ̂n)

]
= L(θo)−

1

2n
[Trace (I(θo) · Σ) + 0]

If the unbiased estimator θ̂n achieves the Cramér–Rao lower bound (CRLB)

then Σ = [I(θo)]
−1

. Therefore the previous formula is simplified as follows

EΘ

[
L(θ̂n)

]
= L(θo)−

d

2n
(44)

Calculation of the Gradient Dθ {L(θo)}

Dθ {L(θo)}i =
∂L(θo, fyre)

∂θi

=

∫ ∞
−∞

fyre(yre)
∂log

(
fyre|Ω(yre|Ω)

)
∂θi

dyre (45)

exploiting the law of the unconscious statistician we get

=

∫ ∞
−∞

fyre|Ω(yre|Ω)
∂log

(
fyre|Ω(yre|Ω)

)
∂θi

dyre

=

∫ ∞
−∞

∂fyre|Ω(yre|Ω)

∂θi
dyre

under some regularity conditions we can invert the integral and the derivative
operators

=
∂

∂θi

∫ ∞
−∞

fyre|Ω(yre|Ω)dyre

=
∂

∂θi
1 = 0∀i

the explicit formula of (45) is

Dθ {L(θo)}k = Eỹre


∂

∂θk
feth(ỹre − ȳre|Ψ)

feth(ỹre − ȳre|Ψ)

−Eỹre
(

∂

∂θk
feth(ỹre − ȳre|Ψ)

)
Eỹre (feth(ỹre − ȳre|Ψ))

= 0

(46)
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Calculation of the Hessian D2
θ {L(θo)}

D2
θ {L(θo)}ij =

∂2L(θo, fyre)

∂θi∂θj

=

∫ ∞
−∞

fyre(yre)
∂2log

(
fyre|Ω(yre|Ω)

)
∂θi∂θj

dyre

by the law of the unconscious statistician we get

=

∫ ∞
−∞

fyre|Ω(yre|Ω)
∂2log

(
fyre|Ω(yre|Ω)

)
∂θi∂θj

dyre

Which is equal to the ij − th element of the Fisher Information Matrix

= −I(θo)ij (47)

The explicit formula is

=
∫∞
−∞ fyre(yre)


∂2

∂θi∂θj
feth(yre − ȳre|Ψ)

feth(yre − ȳre|Ψ)
−

∂

∂θi
feth(yre − ȳre|Ψ) · ∂

∂θj
feth(yre − ȳre|Ψ)

feth(yre − ȳre|Ψ)2

 dyre − · · ·

· · ·


∫∞
−∞ fyre(yre)

∂2

∂θi∂θj
feth(yre − ȳre|Ψ)dyre∫∞

−∞ fyre(yre)feth(yre − ȳre|Ψ)dyre
−

(∫∞
−∞ fyre(yre)

∂

∂θi
feth(yre − ȳre|Ψ)dyre

)
·
(∫∞
−∞ fyre(yre)

∂

∂θj
feth(yre − ȳre|Ψ)dyre

)
(∫∞
−∞ fyre(yre)feth(yre − ȳre|Ψ)dyre

)2


. (48)

Approximation of Dθ

{
L(θ̂n)

}
around θo

Dθ

{
L(θ̂n)

}
≈ Dθ {L(θo)}+

(
θ̂n − θo

)′
D2
θ {L(θo)}

using (46) and (47)

= −
(
θ̂n − θo

)′
I(θo) (49)

Expectation of Dθ

{
L(θ̂n)

}
EΘ

[
Dθ

{
L(θ̂n)

}]
≈ Dθ {L(θo)}+ EΘ

[(
θ̂n − θo

)′]
D2
θ {L(θo)}

On the base of formula (41) and of formula (46) we have approximately a null
expectation

EΘ

[
Dθ

{
L(θ̂n)

}]
≈ 0 (50)
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Variance of Dθ

{
L(θ̂n)

}
VARΘ

[
Dθ

{
L(θ̂n)

}]
≈ VARΘ

[
Dθ {L(θo)}+

(
θ̂n − θo

)′
D2
θ {L(θo)}

]

= VARΘ

[
θ̂′nD

2
θ {L(θo)}

]
= D2

θ {L(θo)}VARΘ

[
θ̂n

]
D2
θ {L(θo)}

= D2
θ {L(θo)}VARΘ

[
θ̂n

]
D2
θ {L(θo)}

= I(θo)
Σ

n
I(θo)

where Σ is the variance matrix of the estimator θ̂n.

If the unbiased estimator θ̂n achieves the Cramér–Rao lower bound (CRLB)

then Σ = [I(θo)]
−1

. Therefore the previous formula is simplified as follows

= I(θo)
[I(θo)]

−1

n
I(θo)

=
I(θo)

n
(51)

Study of the asymptotic distribution of Dθ

{
L(θ̂n)

}

Using the results (50) (51) we deduce its convergence in distribution

Dθ

{
L(θ̂n)

}
d−→ N

[
0,

I(θo)

n

]
(52)

Study of the Asymptotic properties of Ln(θ̂n)

Definition of Ln(θ̂n)

We denote by Ln(θ̂n) the sample expected value of the log likelihood function

with a random parameter θ̂n. Let
{
ỹire
}
i=1,...,n

and
{
ỹjre
}
j=1,...,n

be two random

samples of i.i.d. random variables drawn from the same density distribution
fyre(yre), or weakly dependent (see proposition 4.2. in Bardet, J. M., Doukhan,
P., Lang, G., & Ragache, N. (2008) [11])random variables.
We define

Ln(θ̂n) = =
∫∞
−∞

1
2nh

∑n
i=1 1

(
| ỹ

i
re−yre
h | ≤ 1

)
log

 1
2nh

∑n
j=1 1

(
| ỹ

j
re−yre
h | ≤ 1

)
feth(yre − ȳre|Ψ)∫∞

−∞
1

2nh

∑n
i=1 1

(
| ỹ

i
re−yre
h | ≤ 1

)
feth(yre − ȳre|Ψ)dyre

 dyre

(53)

42



and simplifying we get

=
1

n

n∑
i=1

log

 1
2nh

∑n
j=1 1

(
| ỹ

j
re−ỹ

i
re

h | ≤ 1
)
feth(ỹire − ȳre|Ψ)

1

n

∑n
i= 1 feth(ỹire − ȳre|Ψ)


(54)

2nd order approximation of Ln(θ̂n) around θo

Ln(θ̂n) ≈ Ln(θo)+
(
θ̂n − θo

)′
Dθ {Ln(θo)}+

1

2

(
θ̂n − θo

)′
D2
θ {Ln(θo)}

(
θ̂n − θo

)
(55)

by using formula (59)

= Ln(θo)−
(
θ̂n − θo

)′
I(θo)

(
θ̂n − θo

)
+

1

2

(
θ̂n − θo

)′
D2
θ {Ln(θo)}

(
θ̂n − θo

)
Calculation of the Gradient Dθ {Ln(θo)}

The k-th element of the gradient is

Dθ {Ln(θo)}k =
∂Ln(θo, fyre)

∂θk

=
1

n

n∑
i=1

∂

∂θk
log

 1
2nh

∑n
j=1 1

(
| ỹ

j
re−ỹ

i
re

h | ≤ 1
)
feth(ỹire − ȳre|Ψ)

1

n

∑n
i= 1 feth(ỹire − ȳre|Ψ)



. =
1

n

n∑
i=1


∂

∂θk
feth(ỹire − ȳre|Ψ)

feth(ỹire − ȳre|Ψ)

−
1

n

∑n
i=1

∂

∂θk
feth(ỹire − ȳre|Ψ)

1

n

∑n
i=1 feth(ỹire − ȳre|Ψ)

(56)

Calculation of the Hessian D2
θ {Ln(θo)}

the kj-th element of the hessian is

D2
θ {Ln(θo)}kj =

∂2Ln(θ̂n, fyre)

∂θk∂θj

=
1

n

∑n
i=1


∂2

∂θk∂θj
feth(ỹire − ȳre|Ψ)

feth(ỹire − ȳre|Ψ)
−

∂

∂θk
feth(ỹire − ȳre|Ψ) · ∂

∂θj
feth(ỹire − ȳre|Ψ)

feth(ỹire − ȳre|Ψ)2

− · · ·

· · ·


1

n

∑n
i=1

∂2

∂θk∂θj
feth(ỹire − ȳre|Ψ)

1

n

∑n
i=1 feth(ỹire − ȳre|Ψ)

−

(
1

n

∑n
i=1

∂

∂θk
feth(ỹire − ȳre|Ψ)

)
·
(

1

n

∑n
i=1

∂

∂θj
feth(ỹire − ȳre|Ψ)

)
(

1

n

∑n
i=1 feth(ỹire − ȳre|Ψ)

)2


looking at formula (48) it’s straightforward to see that D2

θ {Ln(θo)} converges
in probability to D2

θ {L(θo)} as n goes to infinity, by the law of large numbers
(LLN).
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Study of the asymptotic distribution of Dθ {Ln(θo)}

In order to study the asymptotic distribution of Dθ {Ln(θo)} we first focus
our attention on the first addend in formula (56). If its mean and variance
are constant and known, using the Central Limit Theorem (CLT)11, we can
immediately write its asymptotic distribution.

1

n

∑n
i=1


∂

∂θk
feth(ỹire − ȳre|Ψ)

feth(ỹire − ȳre|Ψ)

 d−→ N


Eỹre


∂

∂θk
feth(ỹre − ȳre|Ψ)

feth(ỹre − ȳre|Ψ)

 ,

VAR


∂

∂θk
feth(ỹre − ȳre|Ψ)

feth(ỹre − ȳre|Ψ)


n


Notice that, using the Weak Law of Large Numbers (LLN)12 a property of
convergence in probability 13 and the Slutsky’s theorem 14, the second addend
converge in probability to a constant as n tends to infinity

1

n

∑n
i=1

∂

∂θk
feth(ỹire − ȳre|Ψ)

1

n

∑n
i=1 feth(ỹire − ȳre|Ψ)

p−→
Eỹre

(
∂

∂θk
feth(ỹre − ȳre|Ψ)

)
Eỹre (feth(ỹre − ȳre|Ψ))

Therefore again by Slutsky’s theorem15 we can state that

Dθ {Ln(θo)}k
d−→ N


Eỹre


∂

∂θk
feth(ỹre − ȳre|Ψ)

feth(ỹre − ȳre|Ψ)

− Eỹre
(

∂

∂θk
feth(ỹre − ȳre|Ψ)

)
Eỹre (feth(ỹre − ȳre|Ψ))

,

VAR


∂

∂θk
feth(ỹre − ȳre|Ψ)

feth(ỹre − ȳre|Ψ)


n


using (46) we simplify as follows

Dθ {Ln(θo)}
d−→ N

[
0,

I(θo)

n

]
(57)

11(Lindeberg–Lévy CLT) : given a sequence of i.i.d. random variables (or weakly dependent
random variables. See proposition 4.2. in Bardet, J. M., Doukhan, P., Lang, G., & Ragache,
N. (2008) [11]) x̃1, x̃2, ... with E[x̃i] = µ and V ar[x̃n] = σ2 < ∞, the random variable
√
n

((
1
n

∑n
i=1 x̃i

)
− µ

)
d−→ N(0, σ2) converges in distribution to a normal N(0, σ2) as n

approaches infinity
12(Weak Law of Large Numbers) Given a sequence of i.i.d. random variables (or weakly

dependent random variables. See proposition 4.2. in Bardet, J. M., Doukhan, P., Lang, G., &
Ragache, N. (2008) [11]) x̃1, x̃2, ... with E[x̃i] = µ and V ar[x̃i] = σ2 < ∞, then the random

variable
1

n

∑n
i=1 x̃n

p−→ µ as n approaches infinity
13plim (x̃nỹn) = plim (x̃n) · plim (ỹn)
14Given two random variables ỹn and z̃n and a function g(). If ỹn = g(z̃n) and if the

function g is continuous at plim (z̃n) therefore plim (ỹn) = g(plim (z̃n)).
15we define x̃n to be a statistic, x̃ a random variable, c a constant if x̃n

d−→ x̃ and ỹn
p−→ c.

Then x̃n + ỹn
d−→ x̃+ c.
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Some Relevant Asymptotic Results

We have previously studied the asymptotic behavior ofDθ

{
L(θ̂n)

}
andDθ {Ln(θo)}

the two results ( see (52) (57)) allow us to identify an identity between random
variables 16):

Dθ {Ln(θo)} ≈ Dθ

{
L(θ̂n)

}
(58)

Therefore using (49)

Dθ {Ln(θo)} ≈ −
(
θ̂n − θo

)′
I(θo) (59)

Moreover, the previous result let us find a second relation.

D2
θ {Ln(θo)} ≈ D2

θ

{
L(θ̂n)

}
(60)

Thus applying formula (59) we have

D2
θ {Ln(θo)} ≈ −I(θo) (61)

16Notice that Dθ {Ln(θo)} is a random variable in ŷre and Dθ

{
L(θ̂n)

}
is a random variable

in θ̂n
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R Code

Dati.per.R <- read.delim2("E:/Dati per R.txt")

View(Dati.per.R)

library("yuima", lib.loc="~/R/win-library/3.2")

library("fBasics", lib.loc="~/R/win-library/3.2")

# price frequency 10 days

p10daysna<-is.na(Dati.per.R$X10ggp)

p10days<-Dati.per.R$X10ggp[!p10daysna]

# price frequency 20 days

p20daysna<-is.na(Dati.per.R$X20ggp)

p20days<-Dati.per.R$X20ggp[!p20daysna]

# price frequency 30 days

p30daysna<-is.na(Dati.per.R$X30ggp)

p30days<-Dati.per.R$X30ggp[!p30daysna]

# price frequency 40 days

p40daysna<-is.na(Dati.per.R$X40ggp)

p40days<-Dati.per.R$X40ggp[!p40daysna]

# logprice frequency 10 days

lnp10days<-log(p10days)

# logprice frequency 20 days

lnp20days<-log(p20days)

# logprice frequency 30 days

lnp30days<-log(p30days)

# logprice frequency 40 days

lnp40days<-log(p40days)

# Geometric Brwnian Motion 10days

ydata<-setData(p10days, delta=1/(length(p10days)^0.65))

diff.matrix4 <- matrix(c("sigma*x"), 1, 1)

ymodel4 <- setModel(drift = c("(mu*x)"), diffusion = diff.matrix4, time.

variable = "t", state.variable = "x", solve.variable = "x")

yuima4 <- setYuima(data=ydata, model = ymodel4)

mle10days <- qmle(yuima4, start=list(mu=1, sigma=1),method="L-BFGS-B",

lower=list(mu=0,sigma=0))

coef(mle10days)

summary(mle10days)

prof10 <- profile (mle10days)

vcov ( mle10days)

# Geometric Brwnian Motion 20days

ydata<-setData(p20days, delta=1/(length(p20days)^0.65))

diff.matrix4 <- matrix(c("sigma*x"), 1, 1)

ymodel4 <- setModel(drift = c("(mu*x)"), diffusion = diff.matrix4,time.

variable = "t", state.variable = "x", solve.variable = "x")

yuima4 <- setYuima(data=ydata, model = ymodel4)

53



mle20days <- qmle(yuima4, start=list(mu=1, sigma=1),method="L-BFGS-B",

lower=list(mu=0,sigma=0))

coef(mle20days)

summary(mle20days)

prof20 <- profile (mle20days)

vcov ( mle20days)

# Geometric Brwnian Motion 30days

ydata<-setData(p30days, delta=1/(length(p30days)^0.65))

diff.matrix4 <- matrix(c("sigma*x"), 1, 1)

ymodel4 <- setModel(drift = c("(mu*x)"), diffusion = diff.matrix4,time.

variable = "t", state.variable = "x", solve.variable = "x")

yuima4 <- setYuima(data=ydata, model = ymodel4)

mle30days <- qmle(yuima4, start=list(mu=1, sigma=1), method="L-BFGS-B",

lower=list(mu=0,sigma=0))

coef(mle30days)

summary(mle30days)

prof30 <- profile (mle30days)

vcov ( mle30days)

# Geometric Brwnian Motion 40days

ydata<-setData(p40days, delta=1/(length(p40days)^0.65))

diff.matrix4 <- matrix(c("sigma*x"), 1, 1)

ymodel4 <- setModel(drift = c("(mu*x)"), diffusion = diff.matrix4, time.

variable = "t", state.variable = "x", solve.variable = "x")

yuima4 <- setYuima(data=ydata, model = ymodel4)

mle40days <- qmle(yuima4, start=list(mu=1, sigma=1), method="L-BFGS-B",

lower=list(mu=0,sigma=0))

coef(mle40days)

summary(mle40days)

prof40 <- profile (mle40days)

vcov ( mle40days)

# Ornstein-Uhlenbeck process 10days

ydata<-setData(lnp10days, delta=1/(length(lnp10days)^0.65))

diff.matrix4 <- matrix(c("sigma"), 1, 1)

ymodel4 <- setModel(drift = c("(mu-kappa*x)"), diffusion = diff.matrix4,

time.variable = "t", state.variable = "x", solve.variable = "x")

yuima4 <- setYuima(data=ydata, model = ymodel4)

mleln10days <- qmle(yuima4, start=list(mu=1, kappa = 1, sigma =1), method

="L-BFGS-B", lower=list(mu=0,kappa=0,sigma=1))

coef(mleln10days)

summary(mleln10days)

prof10 <- profile (mleln10days)

vcov ( mleln10days)

# Ornstein-Uhlenbeck process 20days

ydata<-setData(lnp20days, delta=1/(length(lnp20days)^0.65))

diff.matrix4 <- matrix(c("sigma"), 1, 1)

ymodel4 <- setModel(drift = c("(mu-kappa*x)"), diffusion = diff.matrix4,

time.variable = "t", state.variable = "x", solve.variable = "x")

yuima4 <- setYuima(data=ydata, model = ymodel4)

54



mleln20days <- qmle(yuima4, start=list(mu=1, kappa = 1, sigma =1), method

="L-BFGS-B", lower=list(mu=0,kappa=0,sigma=1))

coef(mleln20days)

summary(mleln20days)

prof20 <- profile (mleln20days)

vcov ( mleln20days)

# Ornstein-Uhlenbeck process 30days

ydata<-setData(lnp30days, delta=1/(length(lnp30days)^0.65))

diff.matrix4 <- matrix(c("sigma"), 1, 1)

ymodel4 <- setModel(drift = c("(mu-kappa*x)"), diffusion = diff.matrix4,

time.variable = "t", state.variable = "x", solve.variable = "x")

yuima4 <- setYuima(data=ydata, model = ymodel4)

mleln30days <- qmle(yuima4, start=list(mu=1, kappa =1, sigma =1), method=

"L-BFGS-B", lower=list(mu=0,kappa=0,sigma=1))

coef(mleln30days)

summary(mleln30days)

prof30 <- profile (mleln30days)

vcov ( mleln30days)

# Ornstein-Uhlenbeck process 40days

ydata<-setData(lnp40days, delta=1/(length(lnp40days)^0.65))

diff.matrix4 <- matrix(c("sigma"), 1, 1)

ymodel4 <- setModel(drift = c("(mu-kappa*x)"), diffusion = diff.matrix4,

time.variable = "t", state.variable = "x", solve.variable = "x")

yuima4 <- setYuima(data=ydata, model = ymodel4)

mleln40days <- qmle(yuima4, start=list(mu=1, kappa =1, sigma =1), method=

"L-BFGS-B", lower=list(mu=0,kappa=0,sigma=1))

coef(mleln40days)

summary(mleln40days)

prof40 <- profile (mleln40days)

vcov ( mleln40days)

# Coefficients

coef(mle10days)

coef(mle20days)

coef(mle30days)

coef(mle40days)

coef(mleln10days)

coef(mleln20days)

coef(mleln30days)

coef(mleln40days)

# h

1/(length(p10days)^0.65)

1/(length(p20days)^0.65)

1/(length(p30days)^0.65)

1/(length(p40days)^0.65)
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# last value

lnp10days[end(lnp10days)[1]]

lnp20days[end(lnp20days)[1]]

lnp30days[end(lnp30days)[1]]

lnp40days[end(lnp40days)[1]]

# lengths

length(lnp10days)

length(lnp20days)

length(lnp30days)

length(lnp40days)

install.packages("Box.test")

# Autocorrelograms

acfPlot(diff(lnp10days, lag=1), lag.max = 20)

acfPlot(diff(lnp20days, lag=1), lag.max = 20)

acfPlot(diff(lnp30days, lag=1), lag.max = 20)

acfPlot(diff(lnp40days, lag=1), lag.max = 20)

# Partial Autocorrelograms

pacfPlot(diff(lnp10days, lag=1), lag.max = 20)

pacfPlot(diff(lnp20days, lag=1), lag.max = 20)

pacfPlot(diff(lnp30days, lag=1), lag.max = 20)

pacfPlot(diff(lnp40days, lag=1), lag.max = 20)

# Partial Ljung-Box Test

install.packages("FitAR")

library("FitAR", lib.loc="~/R/win-library/3.2")

LBQPlot(diff(lnp10days, lag=1), lag.max = 10)

LBQPlot(diff(lnp20days, lag=1), lag.max = 10)

LBQPlot(diff(lnp30days, lag=1), lag.max = 10)

LBQPlot(diff(lnp40days, lag=1), lag.max = 10)

LjungBoxTest(diff(lnp10days, lag=1), lag.max = 2)

LjungBoxTest(diff(lnp20days, lag=1), lag.max = 2)

LjungBoxTest(diff(lnp30days, lag=1), lag.max = 2)

LjungBoxTest(diff(lnp40days, lag=1), lag.max = 2)

# ACF PACF

par(mfrow=c(1,3))

acfPlot(diff(lnp10days, lag=1), lag.max = 20)
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pacfPlot(diff(lnp10days, lag=1), lag.max = 20)

LBQPlot(diff(lnp10days, lag=1), lag.max = 20)

par(mfrow=c(1,3))

acfPlot(diff(lnp20days, lag=1), lag.max = 20)

pacfPlot(diff(lnp20days, lag=1), lag.max = 20)

LBQPlot(diff(lnp20days, lag=1), lag.max = 20)

par(mfrow=c(1,3))

acfPlot(diff(lnp30days, lag=1), lag.max = 20)

pacfPlot(diff(lnp30days, lag=1), lag.max = 20)

LBQPlot(diff(lnp30days, lag=1), lag.max = 20)

par(mfrow=c(1,3))

acfPlot(diff(lnp40days, lag=1), lag.max = 20)

pacfPlot(diff(lnp40days, lag=1), lag.max = 20)

LBQPlot(diff(lnp40days, lag=1), lag.max = 20)
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