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Abstract

This work reports results of direct numerical simulations (DNS) of compressible

internal flows. For this purpose three internal flow geometries of increasing

complexity are considered, namely planar channel, pipe and rectangular duct flow.

The work focuses on both numerical and physical issues related to wall-bounded

turbulent flows. In the first part of the work some numerical issues concerning

the solution of compressible wall-bounded flows, both in Cartesian and cylindrical

coordinates, are addressed. Attention is focused on the acoustic time-step limitation

which, in the case of wall-bounded flows, is restrictive across all Mach numbers. For

this reason we develop a semi-implicit algorithm for time-accurate simulation of the

compressible Navier-Stokes (N-S) equations. The method is based on linearization

of the partial convective fluxes associated with acoustic waves, in such a way to

suppress, or at least mitigate the acoustic time step restriction. Together with

replacement of the total energy equation with the entropy transport equation,

this approach avoids the inversion of block-banded matrices involved in classical

methods [8], which is replaced by less demanding inversion of standard banded

matrices [92]. This novel implementation, in which only Acoustic Terms are Implicit

(ATI), is more efficient than previous approaches [8, 122], barely requiring the

inversion of a banded scalar system in each coordinate direction. All available

data support higher computational efficiency than existing methods, and saving

of resources ranging from 85% under low-subsonic flow conditions, to about 50%

in supersonic flow. Numerical issues arising from the use of cylindrical coordinates

are also discussed. We show that N-S equations in cylindrical coordinates can be

conveniently recast to guarantee discrete conservation of total kinetic energy [111].

The ATI approach is extended to the cylindrical case to deal with the severe time-

step limitation in the azimuthal direction. In the second part of the work attention

is focused on the effects of Mach and Reynolds number variation for the three

flow geometries considered. DNS of planar channel, pipe and rectangular duct

flow at bulk Mach number Mb = 0.2, 1.5, 3 and up to Reτ ≈ 1000 are presented.

A long-standing topic in compressible flows is the relevant Reynolds number for

comparing flow cases across the Mach number range [28]. At this purpose, different

compressibility transformations [142, 148] are compared to incompressible datasets

at matching relevant Reynolds number [91]. All data show that the Trettel-

Larsson transformation allows excellent collapse of the compressible statistics on the



incompressible ones, thus supporting the validity of semi-local scaling and Morkovin

hypothesis. The size of the typical turbulent eddies is studied through spanwise

spectral densities of the velocity field, which support validity of a scaling based on

the local mean shear and the local friction velocity, with the main conclusion that

the actual size of the eddies does not vary with the Mach number, at a fixed outer

wall distance. Passive scalar transport is also studied across Mach and Reynolds

number. Eventually, similarities and differences between compressible channel, pipe

and rectangular duct flow are investigated.
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Chapter 1

Introduction

Compressible wall-bounded turbulent flows are of obvious importance in mechanical

and aerospace engineering and have been extensively studied in the past [18].

Many reviews on the compressibility effects on turbulence are present in literature

[18, 39, 81, 97, 134], although some basic issues as Mach and Reynolds number

effects on the mean velocity profile and on the Reynolds stresses distribution are

not fully settled yet. Most early studies were based on experimental approaches,

as thoroughly reviewed by Bradshaw [18], Gatski and Bonnet [48], Sandborn

[126], Smits and Dussauge [129]. However, growth of available computational

power has recently made the numerical solution of the full compressible Navier-

Stokes equation feasible, and direct numerical simulation (DNS) has become an

important tool in turbulence research. The effects of finite flow compressibility on

turbulence have been traditionally divided into indirect effects due to mean density

and temperature variations, and genuine effects caused by dilatational velocity

fluctuations and thermodynamic fluctuations. Morkovin [97] postulated that for

non-hypersonic boundary layers (say, M < 5), genuine effects of compressibility

are negligible, hence the mean flow profiles are expected to collapse to the

corresponding incompressible distributions, provided mean density and viscosity

variations are suitably taken into account. Morkovin’s hypothesis also subtends

earlier theoretical findings, as the celebrated van Driest transformation for the

mean velocity profile [146], and led to relations between temperature and velocity

fluctuations for adiabatic boundary layers, collectively known as strong Reynolds

analogies (SRA) [49, 62, 97]. Many studies of compressible boundary layers

support the validity of Morkovin’s hypothesis, at least for adiabatic walls, whereas

the original SRA relationships turned out not to be very robust [55, 116, 165].

3
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Morkovin’s hypothesis, has been validated for adiabatic boundary layers up to

M∞ ≈ 5 both in experiments [126, 131] and numerical simulations [36, 55, 117].

On the other hand it has been shown [28, 35] that in the case of cold walls van

Driest transformation fails at much lower Mach number (Mb = 1.5 in Coleman

et al. [28]), so that Morkovin’s hypothesis does not seem to apply to cold walls.

One of the aims of this work is to investigate the validity of Morkovin’s hypothesis

in the presence of wall heat flux. For this purpose direct numerical simulations

(DNS) of internal flows are performed, where the wall is necessarily cooler than the

bulk. The internal flow configuration is preferred with respect to the boundary layer

(BL), since the generation of inflow boundary condition in the case of isothermal

BL is not trivial. Three different flow geometries of increasing complexity are taken

into account in this work, namely planar channel, circular pipe and rectangular

duct. This work addresses both numerical and physical aspects that arise from

the solution of wall-bounded compressible flows. An extensive literature review of

the physical and numerical aspects in compressible wall-bounded flows is presented

in this chapter. As discussed in Section 1.4 DNS of wall-bounded compressible

flows is more expensive than the incompressible case, mostly due to the acoustic

time step limitation. This led us to develop a novel semi-implicit algorithm for the

treatment of acoustic waves, which allow to mitigate this restriction across all Mach

numbers. The main advantage of the method, described in Section 2.1.2, is the

trifling number of floating point operations required by it. Moreover a simple wall

treatment that allows to double the time step restriction in the case of co-located

flow solvers is also described in Section 2.1.3. Numerical issues that emerge from

discretization of Navier-Stokes (N-S) equations in cylindrical coordinates are also

described specifically in Section 2.2. The novel time-stepping algorithm is validated

in Section 2.3 using homogeneous isotropic turbulence, planar channel and square

duct as test cases. In the second part of this work the results of DNS of planar

channel, circular pipe and rectangular duct are analyzed, Sections 3.1-3.2-3.3. The

simulations here presented involve bulk Mach numbers Mb = 0.1, 0.2, 1.5, 3 spanning

a friction Reynolds number in the range Reτ = 180− 1000. Attention is focused on

the effects of Mach and Reynolds number as well as the flow geometry.

1.1 Compressible channel flow

Planar channel is the simplest prototype of wall-bounded internal flows. Since the

pioneering work of Kim et al. [71], many DNS studies of incompressible channel
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flows have appeared, and Reynolds numbers have been reached at which a sizeable

layer with near-logarithmic variation of the mean velocity emerges [11, 60, 79].

Pioneering studies of turbulent channel flow at supersonic conditions (Mb = 1.5,

Reb = 3000 being the bulk Mach ad Reynolds number, respectively) were carried

out by Coleman et al. [28], Huang et al. [62]. Those authors studied compressible

channel flows between isothermal walls, in which the wall is necessarily cooler than

the bulk fluid, and found that the van Driest-transformed velocity follows only

approximately the incompressible law-of-the-wall, with differences attributed to low-

Reynolds-number effects. Those authors also showed that density and temperature

fluctuations are indeed small as compared to their mean values, thus substantiating

Morkovin’s hypothesis. The turbulent stresses were found to collapse fairly well on

incompressible data when scaled with the mean density ratio, but better agreement

was observed when ‘semi-local’ units are used, based on a local friction velocity

and viscous length scale. Lechner et al. [77] reproduced the flow case considered

by Coleman et al. [28] using a pressure-velocity-entropy formulation with governing

equations cast in characteristic form, and discretized with fifth-order compact

upwind formulas. Good agreement was observed with the results of Coleman

et al. [28], and higher values of the density-scaled normal Reynolds stresses were

observed as compared to the incompressible case, whereas the transformed turbulent

shear stress was found to be lower. Morinishi et al. [95], Tamano and Morinishi

[138] carried out DNS of compressible channel flow between both isothermal and

adiabatic walls using a Fourier/Galerkin B-spline discretization [94], confirming

the validity of Huang’s semi-local scaling for the turbulent stresses. Foysi et al.

[42] performed DNS spanning bulk Mach numbers in the range between 0.3 and

3.5. Consistent with previous works, they found that the density-scaled turbulent

stresses collapse on the incompressible distributions sufficiently far from the wall

when reported in outer scaling, whereas Huang’s semi-local scaling yields better

accuracy than van Driest in inner scaling. Brun et al. [21] developed an extensive

large-eddy simulation database of compressible channel flows, and noticed that as

the Mach number is increased for given bulk Reynolds number the flow tends to

relaminarize, although the friction Reynolds number increases, thus raising the

important question of which is the relevant Reynolds number for comparing flow

cases across the Mach number range. Brun et al. [21] also proposed a modified

form of mean velocity scaling which explicitly takes into account mean viscosity

variations, and which was found to yield better collapse on incompressible data

than semi-local scaling. Wei and Pollard [157, 158] used a discontinuous Galerkin
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solver to develop a DNS dataset of compressible channel flows spanning the bulk

Mach number range between 0.2-1.5. As in previous studies, they found that as the

bulk Mach number increases the transformed turbulent stresses do not follow the

incompressible profiles when reported in wall units. In a recent work, Trettel and

Larsson [141, 142] further investigated failure of the van Driest transformation in

the case of cold walls. They showed that the semi-local scaling of Huang et al. [62] is

actually rooted in arguments of mean momentum balance, and they derived a novel

velocity transformation which by construction satisfies universality of the turbulent

stresses. The novel transformation was shown to yield satisfactory agreement of the

mean velocity profiles with incompressible distributions in a reasonably wide range

of Reynolds and Mach numbers. Recently Patel et al. [106, 107] derived Trettel-

Larsson (TL) transformation from arguments similar to the ones by Trettel and

Larsson [142], and tested it in the low Mach number case finding good agreement

with incompressible data. One of the uses of ‘compressibility transformations’

consists in the derivation of predictive relations for the friction coefficient, such

as the popular van Driest II transformation [148]. In order to derive such friction

relations a temperature-velocity relation is also needed. For that purpose, a typical

choice is Walz relation [156], which has been found to work well for adiabatic

boundary layers [35, 36]. An empirical correction to Walz formula was proposed

by Duan and Martin [34], and generalized by Zhang et al. [165], to explicitly

account for finite wall heat flux. A frequently debated issue in the compressible

flow community is the effect of flow compressibility on the typical length scales in

wall turbulence [129, 134]. Although there is a general consensus that the integral

scales of fluid motion sufficiently away from the wall do not vary substantially with

the Reynolds number, the dependence on the Mach number is still largely unclear.

Furthermore, most available experimental data only refer to the streamwise length

scales, which can be easily estimated from one-point measurements, upon use of

Taylor’s hypothesis. In this respect, Demetriades and Martindale [31] found that

the streamwise integral length scales in a Mach 3 boundary layer are about half as in

incompressible boundary layers. Smits et al. [130] also observed that the streamwise

length scales sensibly decrease with the Mach number, whereas the spanwise length

scales are almost unchanged. On the other hand, Spina et al. [134] claimed that

the integral length scales increase with the Mach number both in inner and outer

units, being weakly affected by the Reynolds number. Recent measurements by

Ganapathisubramani et al. [47] at M = 2 seem to suggest substantial increase of

the eddy size in both the streamwise and in the spanwise direction with the Mach
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number, whereas recent DNS [116] at M = 2 support insensitivity on the Mach

number, at least for adiabatic boundary layers. To shed more light on the open issues

outlined above, we have developed a novel database of compressible channel flow in

the range of bulk Mach numbers from Mb = 1.5 to 3, and bulk Reynolds numbers

up to Reb ≈ 34000, which significantly extends the range of previous DNS. In order

to precisely gauge the importance of compressibility effects and directly assess the

validity of the compressibility transformations, a series of companion incompressible

DNS have been performed so as to exactly match the relevant Reynolds number (see

the later discussion), thus avoiding ambiguities and uncertainties of previous studies.

Results of DNS of compressible channel flow are reported in Section 3.1.

1.2 Compressible pipe flow

The study of compressible fully developed pipe flow is particularly important

since it represents the first prototype of air intake and nozzle/diffuser used in

the aeronautical industry. Despite the fact that usually the flow in air intakes

and nozzles is far from being fully developed, the pipe flow is a simple model

to understand the effect of cylindrical geometries on compressible turbulence.

Many DNS of incompressible pipe flow appeared in literature, ranging from

low [37, 154] to moderately high Reynolds number [2, 26]. The first DNS of

incompressible pipe flow was performed by Eggels et al. [37] who successfully

compared their data with the experimental ones. Orlandi and Fatica [103] and

Fukagata and Kasagi [45] repeated Eggels simulations finding good agreement with

their data. Higher Reynolds number simulations in longer domains have also been

accomplished [1, 2, 26, 27, 38, 78, 160, 161], up to Reτ ≈ 3000 and Lx = 30R.

Experiments are typically carried out in a higher range of Reynolds number,

Reτ ∼ 103−105. [46, 86, 162, 163]. Wu et al. [161] performed DNS of incompressible

pipe flow with streamwise length Lx = 30R. Their data show evidence of a minor

peak in the streamwise energy spectra at small-wavenumbers, which is interpreted

as an evidence of very-large-scale motions (VLSM). Nevertheless comparison with

experiments at matching Reynolds number confirms the findings by Alamo and

Jiménez [3], that the small-wavenumbers peak is overestimated by the use of Taylor’s

hypothesis. Ahn et al. [1] performed DNS of incompressible pipe flow spanning a

friction Reynolds number Reτ ≈ 180 − 1000. They use over-resolved discretization

at the lowest Reynolds number and find differences with previous results, thus

highlighting higher sensibility of the flow statistics to the mesh resolution, with
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respect to channel flow. Those authors also focused attention on the increase of the

streamwise velocity variance peak with Reynolds number. Many studies observed

the increase of the streamwise velocity fluctuations peak with Reynolds number both

for boundary layer and channel flow [11, 84, 127]. On the other hand Princeton

Superpipe experiments reported insensitivity of the peak with Reynolds number,

which highlights differences in the interaction of the outer and near wall region in

pipe with respect to channel. On the contrary Ahn et al. [1] dataset clearly shows

a dependence of the streamwise velocity fluctuations peak with Reynolds number

hence supporting the thesis that the interaction between outer and inner wall layer

is similar in pipe, channel and boundary layer. A longstanding topic regarding the

pipe flow is whether the log law applies or not. Mckeon et al. [86] observed both

power law and log law at Reτ > 5000, depending on y+. Wu et al. [161] observed

power law at Reτ ≈ 1100 and Chin et al. [26] did not inspect log low at Reτ ≈ 2000.

Recent DNS of channel flow up to Reτ = 4000 [11] support the hypothesis of a

linear variation of the log law indicator, whereas plateau indicating the von Karman

constant can only be reached in the limit of infinite Reynolds number [67]. Ahn et al.

[2], Lee et al. [78] showed that large scale motions (LSMs), which are responsible

for the overlap region survive for shorter time in pipe than in channel, due to the

wall confinement thus leading to different universal laws in the overlap region. It

seems that even if many experimental and numerical studies appeared concerning

incompressible pipe flow, some basic issues are not fully settled. Despite the relevant

role that compressible pipe flow may play in the understanding of wall turbulence,

few numerical studies appeared in literature which involve fully developed flows

in cylindrical geometries [51, 52, 53, 125]. Experiments of compressible internal

flows are difficult to perform, and only an experimental study of compressible pipe

Mb = 0.1 − 0.3 appears in literature [72]. To our knowledge the only DNS of

compressible pipe flow was carried out by Ghosh et al. [52], using a fifth order upwind

scheme. Their study is limited to a single Mach number Mb = 1.3 and relatively low

Reynolds number, Reτ ∼ 240, focusing on differences with channel flow. One of their

main findings is that the transverse curvature of the pipe affect mean flow statistics,

but its role is expected to decrease with increasing Reynolds number. Those authors

also extended their study to fully developed nozzles and diffusers using DNS and

LES [51, 53]. As in the case of channel flow Ghosh et al. [52] observed inaccuracy of

the van Driest transformation, whereas the semi-local scaling yield better collapse

of the Reynolds stresses. As in the case of channel flow we focus our attention

on the accuracy of the compressibility transformations for velocity and Reynolds
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stresses. The effect of Mach and Reynolds number on the turbulent scales is studied

using spanwise spectra as for the channel flow. In the case of pipe flow we also put

under scrutiny passive scalar transport, which has been widely study in the case of

homogeneous and free shear turbulence [12, 44], while fewer examples can be found

in compressible wall-bounded flows [41]. Comparison with incompressible statistics

is performed using incompressible data available in literature at approximately

matching Reynolds number. We show that compressibility transformations which

hold for velocity (e.g. van Driest), also work out for the passive scalar fields, by

comparison with incompressible channel flow data [118] and with experimental

fittings Kader [68]. Results of DNS of compressible pipe flows are presented in

Section 3.2.

1.3 Compressible duct flow

Internal flows with rectangular section are common in many engineering

applications, such as water draining or ventilation systems. Moreover it represents

the simplest prototype of internal flow for which 3D effects appear in the mean

flow. Secondary flows which appear in non-circular ducts can be classified into two

kinds, depending on the generation mechanism. Variations to the mean streamwise

vorticity are due to skew-induced contributionand stress-induced contribution [19].

The skew-induced contribution is responsible for Prandtl’s secondary motions of

first kind, while the stress-induced contribution is responsible for secondary motions

of second kind [19]. In straight ducts only secondary motions of second kind are

present, that is the mean streamwise vorticity can only be generated gradients

of Reynolds stresses. Moreover, while secondary motions of first kind may occur

both in laminar and turbulent flows, motions of second kind only characterize

turbulent flows. Rectangular duct flow is therefore particularly interesting due

to the occurrence of Prandtl’s second motions of second kind. A first DNS of

incompressible duct flow has been performed by Gavrilakis [50] who simulated the

flow in a square duct at Reb = 2hub/ν = 4410 (where h is the duct half side),

corresponding to a friction Reynolds number of Reτ = huτ/ν = 150. Gavrilakis

used a second-order staggered finite differences solver, in which Poisson equation

for pressure was solved using cyclic reduction algorithm. Secondary motions were

observed in the cross-stream plane, formed by four pairs of statistically stationary

counter rotating vortices directed to the duct corners. Despite the secondary

motions, the mean flow at the bisectors was found to be similar as in a planar



10 CHAPTER 1. INTRODUCTION

channel. Gavrilakis [50] reported an averaging interval of five turn over times, but

realized that statistics were not fully converged, thus quadrant averages were used

to increase statistical convergence. Huser and Biringen [63] performed DNS with a

spectral solver increasing the Reynolds number up to Reτ = 300. They collected

statistics for a time interval ∆tavue/(2h) = 330 and averaged over the eight triangles.

Pinelli et al. [110], Uhlmann et al. [145] used a spectral solver to study transition

in duct flow, spanning friction Reynolds number from laminar to Reτ = 150. They

found differences between their data and the ones by Gavrilakis [50]. They observed

that a very long averaging time is necessary to collect reliable mean flow statistics,

reporting ∆tavub/h = 8000. Zhang et al. [164] performed DNS of square duct up

to Reτ = 600, which is the highest friction Reynolds number reached up to now

in DNS. They repeated the simulation performed by Huser and Biringen [63] and

found differences with their results, which they attributed to the low mesh resolution

used by those authors. More recent studies [137, 153] focused on the effect of the

aspect ratios and differences with planar channel flow both in the transitional and

fully turbulent regime. Vinuesa et al. [153] performed DNS of duct flow with aspect

rationA = 1−7 at Reτ = 180 using the spectral element solver Nek5000. They also

reported long averaging time ∆tavub/h = 400 − 7000 depending on the case. They

found differences with the planar channel, persisting up toA = 7. Duct flow is also

interesting for turbulence modeling. Secondary motions in fact cannot be predicted

by any turbulence models based on Boussinesq hypothesis which rely on isotropy

of turbulent stresses. LES of turbulent duct flow were performed by Breuer and

Rodi [20], Madabhushi and Vanka [82] at Reτ = 150 and Reτ = 180 respectively.

From previous studies clear difficulties in the simulation of duct flow emerge. The

inhomogeneity in the spanwise direction does not allow to use direct methods for the

solution of Poisson equation for pressure, thus increasing the computational cost.

Besides, ensemble averages can only be collected in the streamwise direction and

in time, thus very long time averaging intervals are required to collect meaningful

statistics. These two issues seem to have limited the maximum achievable Reynolds

number in duct flow with respect to channel and pipe. To date,the only study of

compressible duct flow was carried out by Vázquez and Métais [149], who performed

LES of an isothermal square duct at Mb = 0.5, also changing the wall temperature

on one side of the duct. They achieved good agreement with previous DNS data

for the uniformly cooled case, while no compressibility effect was reported, due to

the relatively low Mach number. It turns out that Mach number effects has never

been investigated in literature and Reynolds number dependence studies are also
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limited. For this purpose we performed DNS of rectangular duct flow at different

Mach and Reynolds number. DNS of square duct flow in the incompressible regime,

at Mb = 0.2 Reτ = 1000 is performed and compared to previous data at lower

Reynolds number. Supersonic duct flow at Mb = 1.5, Reτ = 220 and A = 1− 4 is

presented to study the effect of side walls and differences with the planar channel

case. As for channel and pipe flow a single DNS at Mb = 3 is also carried out.

1.4 Numerical issues in compressible flows

In this Section some of the main difficulties which arise in the solution of compressible

flows are addressed. Since we consider both flows in Cartesian geometries (planar

channel and duct) and in cylindrical coordinates (pipe), this Section is divided into

two parts to separately introduce numerical issues and techniques for Cartesian and

polar coordinates. As we will show, compressible flows in cylindrical coordinates

share intrinsic difficulties with the Cartesian ones, namely the acoustic time step

limitation, but they also poses challenges associated with the pole singularity.

1.4.1 Cartesian coordinates

It is known that the numerical solution of the compressible Navier-Stokes equations

is significantly more time consuming than their incompressible counterpart, partly

owing to the inherently higher number of floating point operations (flops) per grid

point, but mainly because of the much smaller time step imposed by the acoustic

stability restriction. In free-shear flows, conventional explicit algorithms can still

be used efficiently as long as the typical Mach number is of the order of unity.

However, wall-bounded flows inevitably include regions with near stagnant flow

and tiny grid spacing adjacent to solid surfaces, which makes the acoustic time

step limitation in the wall-normal direction dominant, even at high bulk Mach

numbers. Besides being dictated by stability considerations, time step limitations

in turbulent flows also have a physical interpretation, as in order to capture the

relevant physics of transport phenomena with given speed (say U) on a mesh with

given size (say ∆), time steps no larger than ∆/U should be used. Hence, CFL

numbers (defined as the ratio of the time advancement step to the maximum allowed

time step for explicit time integration) should always be of the order of unity for

genuine DNS. In compressible flows, information simultaneously propagate at the

hydrodynamic and at the acoustic speed. However, acoustic waves typically make
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a negligible contribution to the overall energetics of turbulent flows [81]. Hence,

with the obvious exception of cases where acoustic instabilities play an important

role, such as in certain combustion applications [120] or in direct simulation of

aerodynamic noise [29], using a time step which allows to resolve the hydrodynamic

(vortical) mode while giving up accurate representation of acoustic phenomena

may be a legitimate choice, which actually subtends much of the research carried

out for low-speed solvers. It is the goal of this work to develop a numerical

algorithm for direct numerical simulation of compressible flow which is capable of

seamless efficient operation throughout the Mach number range, down to nearly

incompressible conditions. The algorithm is at the same time meant to remove or at

least alleviate the acoustic time step limitation in the presence of solid boundaries.

To gain a clearer perception for the problem, we refer to a canonical compressible

boundary layer flow over a flat surface, or flow in a planar channel. Let ∆x, ∆z

be the mesh spacings in the streamwise and spanwise directions, respectively, and

let ∆y be the minimum mesh spacing in the wall-normal direction, assuming unit

CFL number, the time step limitations associated with the discretization of the

convective terms in the coordinate directions are

∆t+x = ∆x+

max(u+

0
+c+

0
,c+w)

= ∆x+M0

√
Cf/2min

(
1, 1

1+M0

√
Tw/T0

)
,

∆t+y = ∆y+

c+w
= ∆y+M0

√
Cf/2

∆t+z = ∆z+

max(c+
0
,c+w)

= ∆z+M0

√
Cf/2min

(
1,
√

Tw/T0

)
,

(1.1)

where the ‘+’ superscript is used to denote quantities made nondimensional with

respect to local wall units, namely the friction velocity uτ = (τw/ρw)
1/2, and the

viscous length scale δv = νw/uτ , the subscript 0 is used to denote flow properties at

the centerline (for channels) and at the free-stream (for boundary layers), and w to

denote wall properties, with Cf = 2τw/(ρ0u
2
0). It should be noted that if acoustic

waves are suppressed, as is the case of strictly incompressible flow, the time step is

controlled by the streamwise direction, and

∆t+I = ∆x+
√
Cf/2. (1.2)

The viscous time step limitation is mainly effective in the wall-normal direction, and

in wall units one has

∆t+yv = ∆y+
2
. (1.3)



1.4. NUMERICAL ISSUES IN COMPRESSIBLE FLOWS 13

(a)

0 1 2 3 4 5
0

2

4

6

8

10

M0

∆
t+
/√

C
f
/2

(b)

0 1 2 3 4 5
0

2

4

6

M0

∆
t+ i
/∆

t+ y

Figure 1.1: Inviscid time step limitation in the coordinate directions as from
Eqn. (1.1) as a function of the reference Mach number M0. In panel (a) we show ∆tx
(solid), ∆ty (dashed), ∆tz (dot-dashed). In panel (b) we show the ratios ∆tx/∆ty
(solid), ∆tz/∆ty (dot-dashed). For reference, in panel (a) we report with a grey line
the ‘incompressible’ time limitation given in Eqn. (1.2). The symbols denote the
time step limits for the ATI algorithm as dictated by accuracy (circles) and stability
(squares), as discussed in Section 2.3.2.

For the sake of graphical representation of the above formulas, we assume: i) the

distance of the first point from the wall is ∆y+w ≈ 0.7, which is the maximum value for

which accurate turbulence statistics are obtained [91]; ii) the minimum mesh spacing

in the wall-normal direction is ∆y = 2∆yw, which can be achieved by staggering the

mesh in the vertical direction, thus alleviating the stability restrictions [91]; iii) the

wall-parallel mesh spacings are ∆x+ = 8, ∆z+ = 4, which is typical for DNS; iv) the

wall is isothermal, with Tw = T0. Figure 1.1 shows the inviscid time step restrictions

according to Eqn. (1.1) as a function of the reference Mach number M0, scaled by√
Cf/2 (panel a), and as a fraction of the wall-normal allowed time step (panel

b). Inefficiency of explicit compressible solvers is apparent in the low-Mach-number

regime, where vanishingly small time steps are required. Time steps comparable

to those achievable in incompressible flow are only possible starting at M0 ≈ 3.

With the exception of hypersonic flow, the most restrictive time limitation is that

associated with the vertical direction, and an increase by at least a factor of two

can be gained by removing it (see panel b). It is also interesting to note that the

acoustic time limitation in the spanwise size is more restrictive than the streamwise

limitation up to M0 ≈ 1, whereas at supersonic Mach numbers the convective

limitation in x is controlling. Removing the wall-normal acoustic time limitation in

supersonic flow is sufficient to achieve a similar time step as in incompressible flow,

whereas in subsonic flow it is also necessary to remove the acoustic time restriction

in the wall-parallel directions. We further note that the normalized viscous time

limitation ∆t+yv/
√

Cf/2, with ∆t+yv given in Eqn. (1.3) is always much weaker than
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the convective ones, provided ∆y+ ∼ 1, and considering that the range of friction

coefficients typically accessed by DNS is 2 × 10−3 ≤ Cf ≤ 6 × 10−3. While the

above estimates are reported for typical DNS mesh spacings, the case of wall-

resolved RANS, LES and DES is even more severe, as the aspect ratio of near-

wall cells is substantially higher, hence making suppression of the wall-normal time

step restriction mandatory for any practical calculation. All the above-mentioned

difficulties are well know to the CFD community, and a variety of techniques have

been developed to cope with the numerical stiffness of the compressible Navier-

Stokes equations. The chief choice in this respect has traditionally been the use of

(semi-)implicit time integration schemes. A landmark contribution in this sense was

given by Beam and Warming [8, 9], who proposed a time-implicit algorithm for the

solution of the Navier-Stokes equations in conservative form based on linearization of

the convective and viscous flux vectors, coupled with approximate factorization [33]

to handle multiple space dimensions. However, the method is computationally

expensive as it requires the inversion of 5 × 5 block-banded systems of equations,

which is more expensive than, e.g. standard banded systems. In this respect we

note that, whereas the classical Thomas algorithm for tridiagonal matrices requires

a number of floating point operations (flops) of O(6N) (where N is the number of

grid points in a given coordinate direction), its block-tridiagonal version requires

O(3N(M3 + M2)) flops, where M (= 5 in the Beam-Warming algorithm) is the

size of each block [66]. The computational cost is about twice as much in the

case of periodic boundary conditions [7]. Pulliam and Chaussee [122] developed a

variant of the Beam-Warming algorithm which involves the inversion of standard

tridiagonal systems rather than block matrices, with large saving of computer time,

but with loss of accuracy and stability in the case of unsteady simulations [57].

Algorithms of the Beam-Warming family are at the heart of highly successful

aerospace CFD software [24, 121]. Algorithms which avoid inversion of banded

systems of equations have also been designed [83], which may be useful for efficient

parallel implementation. However, those algorithms require point-wise iterative

procedures whereby the right-hand-side of the equations must be evaluated several

times per time step, with unclear outcome in terms of overall efficiency. Alternative

approaches to circumvent the stiffness of compressible Navier-Stokes equations rely

on the use of pre-conditioning techniques, based on the attempt to change the

eigenvalues of the system of equations in order to remove the large disparity of wave

speeds. This is accomplished by pre-multiplying the time derivatives by a matrix

that slows the speed of the acoustic waves down toward the fluid speed [143, 144].
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Preconditioning is the choice of election for steady-state application, however its

extension to unsteady flow problem is not straightforward, requiring the use of

dual time stepping techniques, namely inner iterations in terms of a pseudo-

time [104, 105, 150]. However, the number of iterations per physical time step can be

very large, with subsequent loss of computational efficiency. Specialized algorithms

for the Navier-Stokes equations have been also developed for the low-Mach number

regime, which allow to account for temperature-dependent density variations, as is

typically the case in combustion. All these variable-density algorithms are based on

the idea the only the terms which bring an acoustic contribution should be advanced

implicitly in time, in such a way that the acoustic time limitation is removed.

Numerical schemes of this kind were pioneered by Casulli and Greenspan [25], who

proposed to treat implicitly only the pressure term in the momentum equation and

the dilatation term in the internal energy equation, which results in having to solve

an elliptic equation for pressure, with large incurred overhead. Pierce [109], Wall

et al. [155] extended the classical pressure-correction method [70] to variable-density

flows by solving a Helmholtz equation for the pressure correction, and the use of sub-

iterations. LES results were carried out in which a time step forty times larger than

the explicit case was achieved, with modest computational cost overhead. Moureau

et al. [98] developed an implicit scheme for the removal of the acoustic limitation

which also relies on the solution of a Helmholtz equation, however without reverting

to sub-iterations, with an overhead CPU time of about 25% with respect to standard

incompressible solvers. Hence it appears that, in one way or another, algorithms

tailored for the near-incompressible regime involve either iterative procedures and/or

the inversion of elliptic systems of equations. The latter can only be carried out

efficiently in the case that periodic directions are present, which allows for the use

of direct solvers [133]. In this work we develop a novel semi-implicit algorithm

for the compressible Navier-Stokes equations based on a modification of the basic

Beam-Warming linearization, thus avoiding any iterative procedure. The algorithm

is presented in Section 2.1.2, which also includes a discussion of the treatment of

viscous terms, accurate time integration, and extension to multiple space dimensions.

Numerical examples are given in Section 2.3, which include DNS of turbulent flows

from the low subsonic to the supersonic regime.
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1.4.2 Cylindrical coordinates

In recent years much effort has been dedicated to the development of numerical

schemes for the convective terms in the Navier-Stokes(N-S) equations that discretely

preserve the kinetic energy in the inviscid incompressible limit [13, 69, 99, 111, 112,

136]. The discrete conservation of the kinetic energy allows numerical stability

without the use of upwinding, artificial dissipation or filtering which are common

practices in the compressible flow community. Despite the attention devoted to

the topic, most compressible energy-consistent solvers are limited to Cartesian

coordinates. Notoriously jet and pipe flows are naturally studied in cylindrical

coordinates, and in fact many studies have appeared concerning the discrete

conservation of the kinetic energy in cylindrical coordinates [32, 45, 96, 101, 102, 103,

151], but they are all limited to the incompressible and variable density case. On the

other hand, all compressible studies involving cylindrical geometries deal with non-

linear instabilities using upwinding of filtering [15, 17, 22, 23, 52, 88, 125], which tend

to dump turbulent fluctuations. Hence, energy-preserving schemes are advisable for

turbulent flow simulations, especially for direct and Large Eddy Simulations (LES).

The numerical solution of the Navier-Stokes equations in cylindrical coordinates

poses some intrinsic difficulties with respect to Cartesian coordinates. One

complication is the inherent singularity of cylindrical coordinate systems, which

is numerically treated using different approaches [30, 43, 93, 96, 124, 139, 151]. In

the case of staggered meshes the singularity can be elegantly avoided rewriting the

equations in terms of qx = u, qr = rv qθ = w so that qr, the only quantity evaluated

at the axis, is identically zero [151]. Another approach, also used in compressible

flows, consists in solving the Cartesian equations at the axis [43], thus getting rid

of the singularity. Constantinescu and Lele [30] obtained an exact equation for

the axis, which can be used both for co-located and staggered meshes, which can

be generalized singularities arising in spherical and elliptical coordinates. Despite

the solid foundation of the method, its implementation is not straightforward, and

the simpler approach of Mohseni and Colonius [93], who simply stager the first

point off the axis ∆r/2, is frequently preferred [15]. A further difficulty comes

from the time step restriction. The inviscid time step limitations in the streamwise,

wall-normal and azimuthal direction can in fact be cast as in Eqn. (1.1), with the

only difference that ∆z+c = ∆r+0 ∆θ = ∆r+0 2π/Nz is the mesh spacing at the axis

in the azimuthal direction. Repeating the analysis performed for channel flow in

Section 1.4.1, and assuming standard mesh spacing used in DNS of wall bounded
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flows, namely ∆x+ = 8, ∆y+ = 2∆y+w = 1.4, ∆r+0 = 4 and Nz = 1280 one obtains

the time step limitation as a function of the bulk Mach number.
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Figure 1.2: Time step limitation as a function of the bulk Mach number M0 in
cylindrical coordinates as in Eqn. (1.1). Panel (a) shows time step limitation in wall-
normal (black solid), azimuthal (red dashed) and streamwise (green dash-dotted).
Panel (b) shows ∆t+y /∆t+z (dot-dashed) and ∆t+x /∆t+y (solid).

It is easy to understand from Fig. 1.2 that for azimuthal spacing of practical

interest the time step limitation in θ direction is the most restrictive across all Mach

numbers. Although the azimuthal mesh spacing considered is moderately fine it is

immediate to realize that the ratio ∆t+y /∆t+z hardly becomes smaller than 10 even on

coarse meshes. Note that in Eqn. (1.1) the spanwise velocity w has been neglected,

nevertheless the azimuthal velocity at the axis can be finite, as in the pipe flow, so

that the convective limitation at the axis can also become relevant. The viscous

limitation in in the azimuthal direction is also restrictive, in fact in wall units we

get

∆t+zv = ∆z+0
2
=

(
∆r+0 2π

Nz

)2

. (1.4)

In the incompressible case the time step limitation at the axis is removed by

treating both convective and viscous terms implicitly [56, 96, 151, 160]. In the

compressible case the time step limitation is even more restrictive because of the

acoustic time step constraint, and this difficulty is usually tackled by skipping nodes

when computing derivatives in θ direction [16]. The main disadvantage of this

approach is the natural chess-boarding of the computational stencil, which causes

odd-even decoupling unless the variables are explicitly filtered. In this work we

apply the locally conservative, energy-consistent splitting developed by Pirozzoli

[111] to cylindrical coordinates, together with the singularity treatment of Mohseni

and Colonius [93], which allows to formally preserve the kinetic energy. The acoustic
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time step limitation in the azimuthal and wall normal direction is removed using

the novel approach introduced in Section 2.1.2, although the use of the implicit

integration formally destroys the conservation of the kinetic energy, inviscid test

cases show that the scheme retains excellent conservation properties also at realistic

CFL numbers.



Chapter 2

Numerical approach

In this work both Navier-Stokes equations in Cartesian and cylindrical coordinates

are considered. The discretization of the compressible Navier-Stokes equations in

Cartesian and polar coordinates poses different difficulties, thus requiring specialized

techniques for the two cases In Section 2.1 the equations and numerical techniques

for Cartesian coordinates are introduced. All simulations presented in this work are

performed using the entropy equation, but for the sake of completeness the total

energy equation is also reported, since it is the common choice in compressible flow

solvers. The use of the entropy equation is a building block for the development of

a novel semi-implicit algorithm for the treatment of the acoustic terms, described

in Section 2.1.2. Issues related to the flow initialization and boundary conditions

are also addressed in Section 2.1.3-2.1.4. Section 2.2 focuses on issues specific of the

compressible N-S equations in polar coordinates. A simple approach that allows the

discrete conservation of the kinetic energy is described together with an approach

to relax the severe time step limitation in the azimuthal direction and a proper axis

treatment.

19
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2.1 Governing equations in Cartesian coordinates

The Navier-Stokes equations for a perfect heat-conducting gas in terms of total

energy or entropy equation with passive scalar transport are,

∂ρ

∂t
+

∂ρui

∂xi

= 0, (2.1a)

∂ρui

∂t
+

∂ρuiuj

∂xj

= − ∂p

∂xi

+
∂σij

∂xj

+Πδi1, (2.1b)

∂ρE

∂t
+

∂ρujH

∂xj

= − ∂qj
∂xj

+
∂σijui

∂xj

+Πu1, (2.1c)

∂ρs

∂t
+

∂ρujs

∂xj

=
1

T

(
− ∂qj
∂xj

+ σij
∂ui

∂xj

)
(2.1d)

∂ρφ

∂t
+

∂ρujφ

∂xj

=
∂

∂xj

(
ρα

∂φ

∂xj

)
+ Φ (2.1e)

where ui, i = 1, 2, 3, is the velocity component in the i-th direction. The velocity

components in x, y z direction will be denoted as u, v, w respectively. ρ is the

density, p the pressure, E = cvT + uiui/2 the total energy per unit mass, and

H = E + p/ρ is the total enthalpy and s = cv ln (pρ
−γ) the entropy per unit mass,

γ = cp/cv = 1.4 is the specific heat ratio, qj and σij are the components of the heat

flux vector and the viscous stress tensor respectively,

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
, (2.2)

qj = −k
∂T

∂xj

, (2.3)

where the dependence of the viscosity coefficient on temperature is accounted for

through Sutherland’s law and k = cpµ/Pr is the thermal conductivity, with Pr =

0.71. Equation (2.1e) represents the transport of a passive scalar φ which will also

be considered in this work. The passive scalar diffusivity is α = µ/(ρSc), with Sc

the Schmidt number. Note that Eqn. (2.1c) and (2.1d) are the total energy and

entropy equation, which are of course interchangeable. The total energy equation

is usually the natural choice in the compressible flow community, since it allows

to derive the correct Rankine-Hugoniot jump conditions, while the entropy does

not [123]. Despite that, as we will see in Section 2.1.2, the entropy formulation

allows to derive efficient semi-implicit schemes which can be used for smooth flows,

which are the focus of this work. In the case of internal flows the system must
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be forced in order to keep turbulence alive. The forcing term Π in Eqn. (2.1b) is

evaluated at each time step in order to discretely enforce constant mass-flow-rate in

time, and the corresponding power spent is added to the right-hand-side of the total

energy equation. No forcing term is needed for the entropy equation, Eqn. (2.1d). In

the case of internal flows, depending on the boundary conditions, a forcing term Φ is

added to the passive scalar equation, Eqn. (2.1e), to enforce a constant bulk scalar

flux in time. The compressible Navier-Stokes equations can be cast in compact

vector form for later use,

∂w

∂t
= −

3∑

i=1

∂fi
∂xi

+
3∑

i=1

∂f vi
∂xi

+ S+ F = R(w), (2.4)

where w is the vector of conservative variables, fi and fvi are the Eulerian and viscous

fluxes in the i-th direction, with x, y, z the streamwise, wall normal and spanwise

directions and S the source terms in the entropy equation, namely

w =





ρ

ρuj

ρs

ρφ





, fi =





ρui

ρuiuj + pδij

ρuis

ρuφ





, f vi =





0

σij

−qi/T

ρα ∂φ
∂xi





, S =





0

0

0

0
σℓm

T
∂uℓ

∂xm
− qℓ

T 2

∂T
∂xℓ

0





,

(2.5)

and F =





0

Πδ1j

0

Φ





is the vector of forcing terms.

2.1.1 Space discretization

The nonlinear terms in the Navier-Stokes equations in Cartesian coordinates are

discretized using locally conservative, energy-consistent formulas of arbitrary order

of accuracy which guarantee that the total kinetic energy is discretely preserved

from the convective terms in the limit case of inviscid flow [111]. Let us consider the

Eulerian flux in one direction (say y) fy = ρvϕ, where ϕ is the transported quantity

in the Euler equations, ϕ = 1 for the mass equation, ϕ = uj for the momentum
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H for the total energy, ϕ = s for the entropy equation and φ for the passive scalar

transport. As it is customary in the compressible flow community we recast finite

difference derivative approximations of order of accuracy 2L in terms of numerical

fluxes,

∂fy
∂y

∣∣∣∣
j

=
1

∆y

L∑

l=−L

alf
y
j+l =

1

∆y

(
f̂ y
j+1/2 − f̂ y

j−1/2

)
, (2.6)

and al are the coefficients for the central first derivative of order of accuracy 2L.

j j + 1j − 1 j + 2 j + lj − l

j + 1/2

Figure 2.1: Sketch of the computational stencil in one direction. Computational
nodes are denoted by bullets.

Let us consider the computational stencil in Fig. 2.1.1, the numerical flux f y
j+1/2

for a 2L order of accuracy at the interface j + 1/2 is,

f̂ y
j+1/2 = 2

L∑

l=1

al

l−1∑

m=0

(
ρ̃, v, ϕ

)
j−m,l

. (2.7)

We also introduced the three-point averaging operator,

(
f̃, g, h

)
j,l

=
1

8
(fj + fj+l) (gj + gj+l) (hj + hj+l) , (2.8)

The finite difference approximation of the Eulerian fluxes in Eqn. (2.4) at node

(i, j, k) is

Hi,j,k ≈
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

, (2.9)

Hi,j,k =

[
1

∆xi

(
f̂xi+1/2,j,k − f̂xi−1/2,j,k

)
+

1

∆yj

(
f̂
y
i,j+1/2,k − f̂

y
i,j−1/2,k

)
+

1

∆zk

(
f̂ zi,j,k+1/2 − f̂ zi,j,k−1/2

)]
.

(2.10)

This approach allows conservation of the quantity ϕ2 in the inviscid limit, that
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is the discrete kinetic energy and the entropy variance s2, thus avoiding the

introduction of any artificial viscosity for numerical stabilization, as done in most

existing compressible flow solvers. The viscous fluxes in Eqn. (2.4) are expanded

as Laplacians in order to benefit of a higher dissipation in the wavenumber space

and avoid odd-even decoupling phenomena and approximated with the same order

of accuracy of convective terms,

∂

∂x

(
µ
∂u

∂x

)
=

∂µ

∂x
+ µ

∂2u

∂x2
. (2.11)

In the case of wall-bounded flows the mesh is usually uniform in wall-parallel

direction and stretched towards the wall, so that the wall-normal logical coordinate

η is mapped to physical space through y(η). A detailed description on how non-

uniform meshes are handled is reported in the Appendix 5.1.

2.1.2 Time integration

In this Section a novel semi-implicit algorithm for the treatment of acoustic waves

is introduced. As shown in the following, the use of the entropy equation in

System (2.4) is instrumental to achieving efficient implicit treatment of the acoustic

terms, and also yield benefits in terms of increased robustness as compared to

algorithms solving for the energy equation [58]. On the other hand, this setting

precludes the possibility to directly capture shock waves [123], hence in the following

we restrict ourselves to discussing the case of shock-free flows. Implicit treatment

of viscous terms is also described, since in some cases viscous time step limitation

may become relevant.

Implicit treatment of acoustic waves

In order to remove the time acoustic time step limitation in the generic coordinate

direction (say, y), we proceed by splitting the convective flux vector into a purely

advective part, and a part which supports acoustic fluctuations, namely

fy = f cy + fay , f cy =





0

ρuv

ρv2

ρvw

ρvs





, fay =





ρv

0

p

0

0





. (2.12)
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This approximate splitting is made possible by the use of the entropy equation

instead of the energy equation, and in a linearized setting it yields full decoupling

of the acoustic, vortical and entropy modes [76]. The main advantage for later

purposes is that the acoustic partial flux Jacobian has a simple structure,

Aa
y =

∂fay
∂w

=




0 0 1 0 0

0 0 0 0 0
p
ρ

(
γ − s

Cv

)
0 0 0 p

ρCv

0 0 0 0 0

0 0 0 0 0




. (2.13)

For completeness acoustic and full Jacobians in the three coordinate directions are

also reported in the Appendix 5.2. Splitting of the flux vectors into pressure and

velocity contributions was previously considered by Barth and Steger [6], Steger

[135], based on the attempt to reduce the block size in the implicit operator

as compared to the Beam-Warming algorithm. In essence, these decompositions

amounted [121] to isolating the pressure gradient in the momentum equation and

the pressure flux in the total energy equation. However, besides being consistent

with wave decomposition in a linear setting, we find the splitting (2.13) to be vastly

more robust in practice. We proceed to discretize Eqn. (2.4) between two time levels

n and n+ 1, by evaluating explicitly the convective partial flux, and evaluating the

acoustic partial flux in fully implicit fashion upon linearization about time level n,

namely

fay
n+1 = fay

n +Aa
y
n
(
wn+1 −wn

)
+O(∆t2), (2.14)

thus obtaining

(
I+∆t

∂

∂y
Aa

y
n

)
∆wn = −∆t

∂fNy
∂y

+∆tFn
xz = ∆tRHSn, (2.15)

where ∆wn = wn+1−wn, and where for convenience all terms containing transverse

flux derivatives as well as all viscous fluxes are lumped together into the term Fxz.

All the convective derivatives at the right-hand-side of Eqn. (2.15) are discretized

using conservative, energy-preserving discretizations as in Eqn. (2.10), and viscous

terms are expanded to Laplacian form and discretized with central formulas [80] as

described in Section 2.1.1. In the explicit case this discretization allow to exactly
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conserve the total kinetic energy as well as the entropy variance in the inviscid

incompressible limit, hence providing strong nonlinear stability to the algorithm

without introducing any numerical diffusion [58, 112]. It is important to note

that, because of the special structure of the acoustic flux Jacobian, the inversion

of Eqn. (2.15) is much simpler than in the case of the standard Beam-Warming

algorithm [8]. Component-wise, Eqn. (2.15) reads





∆wn
1 +∆t

∂

∂y
∆wn

3 = ∆tRHSn
1 (2.16a)

∆wn
2 = ∆tRHSn

2 (2.16b)

∆wn
3 +∆t

∂

∂y
(Aa

y
n

31
∆wn

1 ) + ∆t
∂

∂y
(Aa

y
n

35
∆wn

5 ) = ∆tRHSn
3 (2.16c)

∆wn
4 = ∆tRHSn

4 (2.16d)

∆wn
5 = ∆tRHSn

5 (2.16e)

Hence, the time increments of entropy and of the transverse velocity components

can be explicitly evaluated, thus effectively reducing the system of equations to be

solved to





∆wn
1 +∆t

∂

∂y
∆wn

3 = ∆tRHSn
1 (2.17a)

∆wn
3 +∆t

∂

∂y
(Aa

y
n

31
∆wn

1 ) = ∆tRHSn
3 −∆t

∂

∂y
(Aa

y
n

35
∆wn

5 ) = ∆tR̂HS
n

3(2.17b)

which, upon discretization of the space derivative operators, gives rise to a block-

banded system of equations in which each block has 2×2 size, whose solution yields

the time increments of ρ and ρv. Equation (2.17b) can be further rearranged by

formally solving for ∆wn
1 in (2.17a), to obtain

(
1−∆t2Aa

y
n

31

∂2

∂y2
−∆t2

∂Aa
y
n

31

∂y

∂

∂y

)
∆wn

3 = ∆tR̂HS
n

3 −∆t2
∂

∂y

(
Aa

y
n

31
RHSn

1 ,
)
,

(2.18)

whose solution requires the inversion of an ordinary banded system of equations

with bandwidth depending on the accuracy in the approximation of the first and

second space derivative operators. Back substitution into (2.17a) then yields the

time increment of density. Although apparently cumbersome, we find the latter

formulation to be more computationally efficient than the solution of the 2×2 block

system given by Eqn. (2.17b), while the performance is nearly identical. Hence,
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Eqn. (2.18) is used in all the forthcoming implicit numerical applications.

Implicit treatment of viscous terms

If needed, viscous terms can also be handled implicitly, using approximate

factorization. For that purpose, we split the viscous flux derivatives in Eqn. (2.4)

into a Laplacian term and a difference thereof

∂f vy
∂y

= µ
∂2v

∂y2
+ϕv

y, (2.19)

where v is the vector of the primitive variables, v = [ρ, u, v, w, T ], and µ is the

viscosity matrix,

µ =




0 0 0 0 0

0 µ 0 0 0

0 0 µ 0 0

0 0 0 µ 0

0 0 0 0 µCp

PrT .




(2.20)

Freezing for simplicity the viscosity matrix at time step n, the following linearization

is considered,

(
µ
∂2v

∂y2

)n+1

≈
(
µ
∂2v

∂y2

)n

+ µn∂
2P∆wn

∂y2
, (2.21)

where P is the Jacobian of the conservative-to-primitive variables transformation

P =
∂v

∂w
=




1 0 0 0 0

−u
ρ

1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0
−Ts
ρcv

0 0 0 T
ρcv



. (2.22)

Similar to what done to arrive at Eqn. (2.15), the previous linearization yields

(
I+∆t

∂

∂y
Aa

y
n −∆tµn ∂2

∂y2
Pn

)
∆wn = ∆tRHSn, (2.23)



2.1. GOVERNING EQUATIONS IN CARTESIAN COORDINATES 27

which can be factorized as follows

(
I+∆t

∂

∂y
Aa

y
n

)(
I−∆tµn ∂2

∂y2
Pn

)
∆wn = ∆tRHSn. (2.24)

Inversion of Eqn. (2.24) can be be then carried out into two sequential sub-steps,

application of the inversion procedure for

(
I+∆t

∂

∂y
Aa

y
n

)
∆̃w

n
= ∆tRHSn, (2.25)

(
I−∆tµn ∂2

∂y2
Pn

)
∆wn = ∆̃w

n
, (2.26)

whereby the provisional time increment ∆̃w
n
is first computed through the inversion

procedure for the convective fluxes described in Section 2.1.2. The time increment

is then evaluated by inverting the viscous implicit operator at the left-hand-side of

Eqn. (2.26), which, accounting for the special structure of the Jacobian matrix given

in Eqn. (2.22), can be carried out in cascade, as follows





∆wn
1 = ∆̃w1

n
(2.27a)(

1− µn
22∆t

∂2

∂y2
P n
22

)
∆wn

2 = ∆̃w2

n
+ µn

22∆t
∂2

∂y2
(P n

21∆wn
1 ) (2.27b)

(
1− µn

33∆t
∂2

∂y2
P n
33

)
∆wn

3 = ∆̃w3

n
+ µn

33∆t
∂2

∂y2
(P n

31∆wn
1 ) (2.27c)

(
1− µn

44∆t
∂2

∂y2
P n
44

)
∆wn

4 = ∆̃w4

n
+ µn

44∆t
∂2

∂y2
(P n

41∆wn
1 ) (2.27d)

(
1− µn

55∆t
∂2

∂y2
P n
55

)
∆wn

5 = ∆̃w5

n
+ µn

55∆t
∂2

∂y2
(P n

51∆wn
1 ) (2.27e)

The inversion of four standard narrow-banded systems of equations is thus required

for the purpose. We point out that the present procedure is different than the original

Beam-Warming procedure, which relies on linearization of the full viscous flux

vectors, and which again requires the inversion of block-banded systems. However,

we have found the robustness to be very weakly affected by the approximations

herein made.

Multiple space dimensions

As done for the case of one space dimension, the acoustic and viscous time limitations

can be effectively removed through direction-wise factorization of the implicit
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operators. Assuming that all directions are handled in semi-implicit fashion, we

obtain

Ln∆wn = R(wn), (2.28)

where

Ln =

(
I+∆t

∂

∂x
Aa

x
n

)(
I+∆t

∂

∂y
Aa

y
n

)(
I+∆t

∂

∂z
Aa

z
n

)
·

(
I−∆tµn ∂2

∂x2
Pn

)(
I−∆tµn ∂2

∂y2
Pn

)(
I−∆tµn ∂2

∂z2
Pn

)
. (2.29)

Hence, repeated application of the procedures developed in the previous two sections

is needed. the Appendix 5.2.

Accurate time integration

Time accuracy and stability enhancement is typically obtained by Runge-Kutta

schemes as wrapper to one-step implicit procedures outlined in the previous

paragraphs. Low-storage algorithms are a popular choice, and here we consider

for example Wray’s three-stage, third-order scheme [102], adapted to semi-implicit

integration of the convective terms,

L(ℓ)∆w(ℓ) = αℓ∆tR(ℓ−1) + βℓ∆tR(ℓ), ℓ = 0, 1, 2, (2.30)

where ∆w(ℓ) = w(ℓ+1) − w(ℓ), w(0) = wn, wn+1 = w(3), the left-hand-side implicit

operator is a generalization of Eqn. (2.29), namely

L(ℓ) =

(
I+ γℓ∆t

∂

∂x
Aa

x
(ℓ)

)(
I+ γℓ∆t

∂

∂y
Aa

y
(ℓ)

)(
I+ γℓ∆t

∂

∂z
Aa

z
(ℓ)

)
·

(
I− γℓ∆tµ(ℓ) ∂

2

∂x2
P(ℓ)

)(
I− γℓ∆tµ(ℓ) ∂

2

∂y2
P(ℓ)

)(
I− γℓ∆tµ(ℓ) ∂

2

∂z2
P(ℓ)

)
,

and the integration coefficient are αℓ = (0, 17/60,−5/12), βℓ = (8/15, 5/12, 3/4),

γℓ = αℓ + βℓ. We have found this time stepping scheme to work well in practice,

however because of the partial flux linearization, the method is only formally first-

order accurate in time. A genuinely third-order accurate semi-implicit Runge-Kutta
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scheme was derived by Nikitin [100], which can be conveniently cast as follows





Ln∆w(1) =
2

3
∆tRn (2.31a)

L(1)∆w(2) = −
(
w(1) −wn

)
+

1

3
∆tRn +

1

3
∆tR(1) (2.31b)

∆w(3) =
1

2

(
w(2) −wn

)
− 3

2
α∆w(2) (2.31c)

L(3)∆w(4) = −
(
w(3) −wn

)
+

1

4
∆tRn +

3

4
∆tR(1) (2.31d)

L(4)∆w(5) = −
(
w(4) −wn

)
+

1

4
∆tRn +

3

4
∆tR(2), (2.31e)

where γℓ = γ is the same for all sub-steps, and α are free parameters (hereafter,

we assume α = 1, γ = 0.6). With respect to Wray’s algorithm, Eqn. (2.31) is

not in low-storage form (although it can be implemented using three arrays only),

and it involves an additional inversion, but no additional evaluation of the explicit

operator. Despite the slight computational overhead, all the following analysis and

numerical experiments are carried out with algorithm (2.31) because of its higher

formal accuracy.

Stability analysis

The stability of the semi-implicit algorithm herein developed is here analyzed within

the simplified setting of the linearized inviscid acoustic equations in the presence of

a mean flow u0, which can be cast as

∂v

∂t
+A

∂v

∂x
= 0, v =

[
ρ′

u′

]
, A =

[
u0 ρ0

c20/ρ0 u0

]
, (2.32)

where the subscript 0 refers to the unperturbed state, and primes to fluctuations

thereof. A semi-implicit discretization of Eqn. (2.32) can be obtained by considering

the linearized counterpart of the partial flux Jacobian (2.13), namely

Aa =

[
u0 ρ0

c20/ρ0 0

]
. (2.33)

Backward Euler discretization of Eqn. (2.32) then yields

(
I−∆tAa ∂

∂x

)
∆vn = −∆tA

∂vn

∂x
. (2.34)
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Figure 2.2: Smallest eigenvalue of amplification matrix at CFL = 1 (a), CFL = 2 (b),
CFL = 5 (c), for explicit Runge-Kutta time integration (dotted lines), semi-implicit
time integration (with α = 1, γ = 0.6, solid lines), and fully implicit Beam-Warming
scheme (dashed lines), at Mach number M0 = 0.3. Curves are only shown for stable
schemes.

Transforming Eqn. (2.34) to Fourier space with the token v(x, t) = v̂(t)eikx yields

the amplification matrix of the scheme

G = I−
(
I− i∆tk̃Aa

)
−1

i∆tk̃A, (2.35)

where vn+1 = Gvn, and k̃ is the modified wavenumber corresponding to the

discretization of the space first derivative operator [152]. Von Neumann’s stability

condition requires that both eigenvalues of G are no larger than unity in modulus.

Assuming for instance second-order central differencing (i.e. k̃h = sin(kh)), it turns

out that the scheme (2.34) is unconditionally stable for M0 = u0/c0 . 1. A similar

analysis can be carried out (details are omitted) for the Runge-Kutta time stepping

scheme of Eqn. (2.31). In the case of explicit time integration (i.e. γ = 0) the

scheme is stable for CFL .
√
3, where CFL = (u0 + c0)∆t/h. In the case of semi-

implicit time integration (with γ = 0.6, α = 1) unconditional stability is achieved

for M0 . 0.525. To provide an idea of the accuracy of the algorithm, in Fig. 2.2

we show the smallest eigenvalues of the amplification matrix at various Courant

numbers for explicit and semi-implicit Runge-Kutta time integration. For reference,

the amplification factor of the baseline Beam-Warming algorithm is also shown.

At CFL numbers lower than the stability limit for explicit discretization (panel

(a)), the semi-implicit and the fully explicit algorithms have similar performance,

whereas the Beam-Warming algorithm has somewhat higher diffusion. At higher

Courant numbers the explicit scheme goes unstable, and semi-implicit and fully

implicit scheme have similar performance, with slightly less diffusive behavior of

Beam-Warming at higher CFL. Notably, all schemes have unit amplification factor

at the Niquist limit (kh = π), hence they are not dissipative in the sense of Kreiss.
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This is the reason why schemes of the Beam-Warming family are typically used with

explicit addition of artificial diffusion terms [8, 57]. We note that the semi-implicit

algorithms herein dealt with have zero numerical diffusion at the highest resolved

wavenumbers. For this reason Beam-Warming scheme is often used in conjunction to

additional numerical diffusion terms. On the other hand we found that no artificial

diffusion is necessary, due to the space discretization here used which allows to

exactly preserve the total kinetic energy from convection, and conserve the entropy

variance in the inviscid limit, hence providing strong nonlinear stability to the

algorithm without introducing any numerical diffusion.

Computational efficiency

Scheme CPU/CPUEXPL

EXPL 1.
ATI 1.14
ATI-CYC 1.16
AVTI 1.32
AVTI-CYC 1.37
BW 1.67
BW-CYC 2.21
BWV 1.87
BWV-CYC 2.33

Table 2.1: Computational cost for implicit schemes compared to fully explicit
discretization. Figures refer to implicit treatment of a single space direction.

Achieving higher computational efficiency is obviously the main motivation for

using implicit algorithms, which are inherently more computationally intensive than

explicit ones. Computational cost figures for the present semi-implicit algorithm and

for the Beam-Warming scheme are listed in Tab. 2.1, as a fraction of the cost for

the baseline explicit algorithm. Cost estimates are given for implicit treatment of

convective terms only, and for simultaneous treatment of convective and viscous

terms, referring to a single space direction. Also for ease of later reference, we

use the following notation to distinguish the various schemes. The semi-implicit

scheme herein developed is referred to as either ATI (acoustic terms-implicit, as

in Eqn. (2.15)), or ATVI in the case that both convective and viscous terms are

handled implicitly (Eqn. (2.23)). As a basis of comparison, cost figures for the

Beam-Warming (BW) scheme, also with implicit treatment of the viscous terms

(BWV) are reported. Cost figures are provided for both the case of periodic (CYC)
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and non-periodic boundary conditions. It should be noted that the cost estimates

refer to actual parallel computations, and also include the computational overhead

for data transposition across processors in non-contiguous space directions. Of

course, precise figures may change depending on the specific implementation of the

algorithm and/or machine architecture, but we trust that the numbers listed in the

table provide a reasonably robust estimate. It appears that the computational

overhead of the ATI algorithm is rather limited, hence implicit treatment of a

given space direction is computationally advantageous provided the attainable

time step is at least 20% higher than for fully explicit. Substantial improvement

of computational efficiency over standard Beam-Warming discretization is also

apparent, for comparable expected accuracy (recalling Fig. 2.2).

2.1.3 Boundary closure

In order to evaluate central spatial derivatives as described in Section 2.1.1 nodes

j − l and j + l are needed which clearly poses issues at the exterior boundaries, or

at the block boundaries where nodes outside the domain are required. In present

computations the ghost nodes approach is used for all boundaries. The number

of ghost nodes ng is proportional to the order of accuracy of the scheme ng = L.

In the simulation of wall-bounded internal flows one direction (streamwise in duct)

or two directions (streamwise and spanwise in channel and pipe) are periodic. In

periodic directions the solution in the ghost nodes (say i = Nx + l, l = 1 . . . , ng) is

taken from the inner nodes on the opposite boundary, (i = l). The treatment of the

wall boundary conditions for compressible internal flows may be more critical. Most

compressible flow solvers use co-located meshes and only few examples or staggered

compressible solvers are available in literature [14, 99]. The presence of the wall

in co-located meshes, in which the wall coincides with a node, may lead to lack of

total mass conservation in the case of internal flows. This can be easily understood

computing the total mass
∑Nx,Ny ,Nz

i,j,k ρi,j,k, which can only vary due to the Eulerian

flux in Eqn. (2.10), thus summingHi,j,k on all nodes and using ∆xi = ∆x, ∆zk = ∆z,

∆yNy = ∆y1,

Nx,Ny ,Nz∑

i,j,k

Hi,j,k =

[
1

∆x

(
f̂xNx+1/2,j,k − f̂x−1/2,j,k

)
+

1

∆yNy

(
f̂yi,Ny+1/2,k − f̂yi,−1/2,k

)
+

1

∆z

(
f̂ zi,j,Nz+1/2 − f̂ zi,j,−1/2

)]
=

1

∆yNy

(
f̂yi,Ny+1/2,k − f̂yi,Ny−1/2,k

)
.
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(2.36)

Equation (2.36) shows that mass is not conserved in the case of co-located walls, since

in general f̂yi,Ny+1/2,k 6= f̂yi,Ny−1/2,k. This issue was solved in previous studies [28,

28, 96] by adding a source term to the continuity equation at the wall nodes so that

the net mass variation is zero. In this work we prefer to stagger the first node off the

wall in such a way that the latter coincides with an intermediate node (see Fig. 2.3),

where the convective fluxes f̂yi,Ny+1/2,k = f̂yi,Ny−1/2,k = 0 are identically zero.

y

y = 0

y = 2h

j = 0

j = 1/2

j = 1

j = 2

j = Ny + 1

j = Ny

j = Ny + 1/2

j = Ny − 1

.

.

.

.

.

.

Figure 2.3: Distribution of collocation points in wall-normal direction. Walls are
made to coincide with the intermediate nodes j = 1/2, j = Ny + 1/2, where the
numerical convective fluxes are set to zero.

Hence, correct telescoping of the numerical fluxes is guaranteed, and no net

mass variation can occur. A further benefit of this approach is that, for given

distance of the first grid point from the wall, the maximum allowable time step

associated with the vertical mesh spacing is doubled. The only minor difficulty that

arises from staggering is the enforcement of the impermeability and wall thermal

condition. Hence we simply reflect pressure from the interior nodes and extrapolate
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temperature and velocity,

p (i, 1− l, k) = p (i, l, k) (2.37a)

T (i, 1− l, k) = 2Twall − T (i, l, k) (2.37b)

ρ (i, 1− l, k) = p (i, 1− l, k) /(RT (i, 1− l, k)) (2.37c)

u (i, 1− l, k) = 2uwall − u (i, l, k) (2.37d)

v (i, 1− l, k) = −v (i, l, k) (2.37e)

w (i, 1− l, k) = −w (i, l, k) , (2.37f)

with i = 1, . . . , Nx l = 1, . . . , Ng k = 1, . . . , Nz. In all simulations considered in this

work the wall is isothermal, since this is the only realistic scenario in the case of

internal flows. Adiabatic wall condition would require the addition of a sink term to

the total energy/entropy equation, in order to reach a statistically stationary state.

All simulations are performed in a convective frame of reference, in which the flow

bulk velocity is zero, normally we set uwall = −ub, where ub is the bulk velocity

of the flow. As pointed out by Bernardini et al. [10] finite difference discretization

is not Galilean invariant, with an error that is proportional to the mesh spacing

and inversely proportional to the bulk velocity of the flow, thus using a frame of

reference in which the flow bulk velocity is close to zero reduces this error.

2.1.4 Flow initialization

The choice of the initial conditions is also a non-obvious choice in DNS of wall-

bounded flows, since not all initial conditions yield properly developed turbulence.

If possible, the best option would be interpolating from a coarser turbulent solution,

or from a previously obtained solution at different Reynolds number. A more

straightforward, frequently used approach is to initialize the flow with a laminar

velocity profile (i.e. a parabolic profile for Poiseuille flow), with superposed random

fluctuations. In our experience this approach should be discarded, as it may fail to

trigger transition, since if the mesh is fine enough, the small-scale fluctuations are

immediately damped by physical viscosity. A recommended approach is to augment

the initially laminar profile with more or less physical deterministic disturbances,

as obtained for instance with the digital filtering technique [73]. A compromise

between effectiveness and simplicity is to add an array of longitudinal rollers, which

are extremely effective in redistributing momentum, hence triggering transition to
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a turbulent state. A simple prescription is as follows,

v (y, z) = Av sin (πy/2) cos (2πzLz), (2.38a)

w (y, z) = Aw cos (πy/2) sin (2πzLz), (2.38b)

where Aw = −AvLz/4, with Av an arbitrary amplitude (a few percent of the

bulk velocity is sufficient). The difference of adding deterministic disturbances is

illustrated in Fig. 2.4, where we show the time history of the friction coefficient for

purely random initial conditions (solid lines) and with added longitudinal rollers

(dashed lines). It is clear that transition only occurs in the latter case on a time

scale tuτ/h ≈ 10, which is typical to achieve a fully turbulent state.

0 10 20 30
0

0.002

0.004

0.006

0.008

0.01

t/τ

C
f

Figure 2.4: Channel flow at Reb = 5700, Mb = 0.1: time history of friction coefficient
Cf = 2(uτ/ub)

2. Times are made nondimensional with respect to the characteristic
eddy turnover time τ = h/uτ . Dashed line: initial conditions with purely random
disturbances; solid line: with superposed rollers as given in Eqn. (2.38).

The use of digital filtering technique rather than Eqn. (2.38), would give similar

results, being of more difficult implementation. The flow field is therefor initialized

using the incompressible laminar velocity profile to which organized fluctuations, as

in Eqn. (2.38) are superposed, density and temperature profiles are set to uniform

values. The laminar solution of the incompressible flow in channel pipe and duct

that used for initialization are reported in the Appendix 5.4.
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2.2 Governing equations in cylindrical

coordinates

Let us consider the cylindrical system of coordinates in Fig. 2.2.

y

z

x

P1(x1, r1, θ1)

ar

aθ

ax

θ1

r1

x1

Figure 2.5: Cylindrical system of coordinates. The red plane x = x1 indicates a slice
in the rθ plane, while the blue one represents a slice in the xr plane.

Navier-Stokes equations for a compressible, ideal fluid in cylindrical coordinates

with passive scalar transport can be written,

∂w

∂t
+

1

r

(
∂fx
∂x

+
∂fr
∂r

+
1

r

∂fθ
∂θ

)
− ∂f vx

∂x
− 1

r

∂r f vr
∂r

− 1

r

∂f vθ
∂θ

+ Se − Sv = 0, (2.39)

where w is the vector of the conservative variables, and fi, f vi i = 1, 2, 3 are the

convective and viscous fluxes in the three coordinate directions,

w =




ρ

ρuj

ρs

ρφ



, fi =




Rui

Rui uj + P δij

Rui s

Ruiφ



, j = 1, 2, 3, (2.40)

having introduced for convenience the variables R = r ρ, P = r p. ui are the velocity

components in x, r and θ, streamwise, radial and azimuthal direction, which will



2.2. GOVERNING EQUATIONS IN CYLINDRICAL COORDINATES 37

also be denoted as u = ux, v = −ur, w = uθ. s = Cv log p/ρ
γ is the entropy per unit

mass and φ the passive scalar field. x ∈ [0, Lx], r ∈ [0, R] and θ ∈ [0, 2 π].

The viscous fluxes are

f vx =




0

σxx

σxr

σxθ

qx

Jx




, f vr =




0

σxr

σrr

σrθ

qr

Jr




, f vθ =




0

σxθ

σrθ

qθθ

qθ

Jθ




, (2.41)

where σij are the viscous stress components,

σxx = µ

(
2
∂ux

∂x
− 2

3
Θ

)
(2.42a)

σxr = µ

(
∂ur

∂x
+

∂ux

∂r

)
(2.42b)

σxθ = µ

(
∂uθ

∂x
+

1

r

∂ux

∂θ

)
(2.42c)

σrr = µ

(
2
∂ur

∂r
− 2

3
Θ

)
(2.42d)

σrθ = µ

(
∂uθ

∂r
+

1

r

∂ur

∂θ
− uθ

r

)
(2.42e)

σθθ = µ

(
2

(
1

r

∂uθ

∂θ
+

ur

r

)
− 2

3
Θ

)
, (2.42f)

(2.42g)

qj is the heat flux vector,

qx =
k

T

∂T

∂x
(2.43a)

qr =
k

T

1

r

∂rT

∂r
(2.43b)

qθ =
k

T

1

r

∂T

∂θ
, (2.43c)

(2.43d)
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and Ji is the diffusion flux vector,

Jx = ρα
∂φ

∂x
(2.44a)

Jr = ρα
1

r

∂rφ

∂r
(2.44b)

Jθ = ρα
1

r

∂φ

∂θ
, (2.44c)

and Θ is the dilatation,

Θ =
∂ux

∂x
+

∂

∂r

(
r
∂ur

∂r

)
+

1

r

∂uθ

∂θ
. (2.45)

The Eulerian and viscous source terms Se and Sv are,

Se =
1

r




0

0

−ρ u2
θ − p

ρ ur uθ

0



, Sv =




0

0

−σθθ

r
σrθ

r
σlm

T
∂ul

∂xm
− ql

T 2

∂T
∂xm




(2.46)

2.2.1 Space discretization

The introduction of the quantities R and P , in Eqn. (2.40) allows to discretize the

convective terms as done for the Cartesian equations in Section 2.1.1. The convective

terms are discretized through an energy-consistent, locally conservative, scheme of

arbitrary order of accuracy [111], which guarantees preservation of the total kinetic

energy from convection in the inviscid limit. The scheme was originally developed

for Cartesian coordinates and successively extended to generalized curvilinear

coordinates with smooth Jacobians [112]. Let us consider the 1D stencil in Fig. 2.2.1,

j j + 1j − 1 j + 2 j + lj − l

j + 1/2

Figure 2.6: Sketch of the computational stencil in one direction. Computational
nodes are denoted by bullets.

the numerical flux (see Eqn. (2.6)) in a generic coordinate direction (say r) for 2L
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order of accuracy is

f̂ r
j+1/2 = 2

L∑

l=1

al

l−1∑

m=0

(
R̃, v, ϕ

)
j−m,l

, (2.47)

where ϕ is the transported quantity in the Euler equations, ϕ = 1 for the mass

equation, ϕ = uj for the momentum, ϕ = s for the entropy equation and φ for

the passive scalar, and we used the three-point averaging operator introduced in

Eqn. (2.8). The finite difference approximation of the Eulerian fluxes in Eqn. (2.39)

at node (i, j, k) is

Hi,j,k ≈
1

r

(
∂fx
∂x

+
∂fr
∂r

+
1

r

∂fθ
∂θ

)
+ Se, (2.48)

Hi,j,k =
1

rj

[
1

∆xi

(
f̂xi+1/2,j,k − f̂xi−1/2,j,k

)
+

1

∆rj

(
f̂ ri,j+1/2,k − f̂ ri,j−1/2,k

)
+

1

rj

1

∆θk

(
f̂ θi,j,k+1/2 − f̂ θi,j,k−1/2

)]
+ Sei,j,k

(2.49)

The Eulerian source terms in Se do not pose any problem for discrete energy

consistency because they do not appear in the kinetic energy equation. The

discretization of the Eulerian terms as in Eqn. (2.49) thus allows to conserve the

kinetic energy in the case of cylindrical coordinates. As for the Cartesian equations

in Section 2.1.1 the viscous fluxes are expanded as Laplacians in each direction. Full

expansion of the viscous fluxes into Laplacians is reported in the Appendix 5.3. The

only noteworthy difference with the Cartesian discretization is the approximation of

the Laplacians in radial direction, which are computed using staggered second order

derivatives

∂2f

∂r2
+

1

r

∂f

∂r
=

1

r

∂

∂r

(
r
∂f

∂r

)
=

1

rj

1

∆rj

(
rj+1/2(fj+1 − fj)

∆rj+1/2

− rj−1/2(fj − fj−1)

∆rj−1/2

)
.

(2.50)

In our experience this approach shows better performances in the pole region due to

the narrower stencil and to the fact that we let the axis coincide with an intercell [93],

where the radial coordinate is identically zero, (rj = 0 at j = −1/2, see Section 2.2.3

for a discussion of the axis treatment). The Laplacians in the streamwise and

spanwise direction and first derivatives are computed using standard central finite

differences approximations.
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2.2.2 Time integration

Time integration of the Navier-Stokes equations in cylindrical coordinates is carried

out using the ATI algorithm described in Section 2.1.2. In the case of cylindrical

coordinates, simultaneous implicit treatment of both acoustic and viscous terms

(AVTI) is mandatory in the azimuthal direction, since both viscous and acoustic

limitations are restrictive at the axis. In the case of high-Reynolds-number

simulations, the convective time step limitation in the azimuthal direction may also

be relevant, as the azimuthal velocity component w is finite at the axis. In order

to relax the convective limitation in θ direction, the azimuthal derivatives of the

convective flux only are taken with coarsened resolution as the axis is approached.

Towards the axis points are skipped and the effective resolution of the convective

flux f cθ (split as in Eqn. (2.12)) is reduced so as to relax the convective time step

limitation in θ direction,

∂f cθ
r∂θ

∣∣∣∣
j,k

=
L∑

l=1

al
f θck+lmj

− f θck−lmj

mjrj∆θk
, (2.51)

where mj is an integer chosen in such a way to set the azimuthal spacing at the axis

equal to the minimum spacing in the radial direction mj∆θrj = 2∆yw,

mj = min (Nz∆yw/(πrj),mmax). (2.52)

In any case we do not use less than eight points mmax = Nz/8. We found this choice

to be a good compromise between the accuracy near the axis and the maximum

allowable time step. We limit ourselves to reduce the effective resolution of the

convective derivatives only, while AVTI is used for acoustic and viscous terms. We

found this approach to be more robust and accurate than reducing the effective

resolution of all the azimuthal derivatives. The use of Eqn. (2.51) causes some

check-boarding of the computational stencil near the axis with consequent odd-

even decoupling, so that some filtering in the azimuthal direction is mandatory for

that purpose. We use a low-pass filter with cut-off wavenumber changing along the

radial coordinate. In particular we choose the cut-off wavenumber in such a way

that kco/r = kmax/R, where kmax is the maximum wavenumber. kco will therefor be

the integer such that,

kcoj = min

(
kmax

(rj + r0)

R
, kmax

)
, (2.53)
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where r0 is a constant that avoids kco to become too small. In our experience r0 = 0.1

is a reasonable choice. Figure 2.7 shows kco and mj as a function of the distance

from the wall y = 1− r for the pipe flow simulation P15, reported in Tab. 3.4. It is

clear that the filter has no effect on the near wall region, where azimuthal derivatives

are taken with full resolution.
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Figure 2.7: (a) Cut-off wavenumber kco (Eqn. (2.53)) as a function of the distance
from the wall y = 1 − r. The maximum wavenumber kmax is indicated by the red
dashed line. (b) Index mj of Eqn. (2.52) for coarsened derivatives as a function of
the distance from the wall y.
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2.2.3 Boundary closure

In pipe flow periodicity is imposed in the streamise and spanwise direction. The axis

is treated according to Mohseni and Colonius [93], that is, the mesh is staggered

along the radial direction and the first point (at ∆r/2 from the axis) coincides with

the intercell j = −1/2 (see Fig. 2.2.3a).

(a)

j = −1/2

rθ

j = 1

j = 2

∆r
2

(b)

rθ

j = 2

j = 1

Figure 2.8: Sketch of different axis treatments. (a) Approach by Mohseni and
Colonius [93] in which the first point j = 1 is at distance ∆r/2 from the axis. (b)
Approach of Constantinescu and Lele [30] in which an ad hoc equation is solved at
the axis.

This treatment is preferred with respect to other approaches (Constantinescu and

Lele [30], Mitchell et al. [88], Fig. 2.2.3b) because of its simplicity and, above all,

its the only one which allows to formally conserve the discrete kinetic energy. No

numerical boundary conditions are needed at the axis. The exact values of the

function at the opposite side of the axis can in fact be used,

ρ(i, 1− l, k) = ρ(i, l, kπ) (2.54a)

ux(i, 1− l, k) = ux(i, l, kπ) (2.54b)

ur(i, 1− l, k) = −ur(i, l, kπ) (2.54c)

uθ(i, 1− l, k) = −uθ(i, l, kπ) (2.54d)

s(i, 1− l, k) = s(i, l, kπ), (2.54e)

(2.54f)

with i = 1, . . . , Nx, l = 1, . . . , Ng and k = 1, . . . , Nz. kπ is the index that identify
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the node at distance π from k. On the other side of the axis the polar velocity

components change sign, as in Fig. 2.2.3.

j = 1

j = 0

rθ

uruθ

−ur −uθ

Figure 2.9: Sketch of the boundary conditions the axis. Quantities are copied from
the other side of the axis, polar velocity components ur and uθ with opposite sign,
as in Eqn. (2.54).

We also note that since the axis coincides with an intercell ( see Fig. 2.2.3a ), the

numerical flux in the radial direction f̂ ri,−1/2,k in Eqn. (2.49) can be set to zero,

for every i and k and for every time step. The idea is similar to the trick used

by Verzicco and Orlandi [151] in the staggered case. The wall boundary is treated

with the same approach described in Section 2.1.3.

2.3 Validation of the Cartesian solver

In this Section the DNS codes in Cartesian and cylindrical coordinates are validate,

through a series of canonical test cases. The performance of the semi-implicit

algorithm developed in Section 2.1.2 is tested through application to isotropic

turbulence, channel and duct flow. The cylindrical solver is validated using Lamb

dipole, inviscid and laminar pipe flow.

2.3.1 Isotropic turbulence

Numerical simulations of homogeneous isotropic turbulence have been frequently

carried out to evaluate the properties of numerical schemes for turbulent flows [128].
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DNS are here carried out in a triply periodic (2π)3 box, discretized with 642

collocation points. At the initial time pressure and density are taken to be

uniform, and solenoidal velocity perturbations are added according to the procedure

introduced by Blaisdell [12], with prescribed three-dimensional energy spectrum

E(k) = 16

√
2

π

u2
0

k0

(
k

k0

)4

e−2(k/k0)2 , (2.55)

where k0 = 4 is the most energetic mode. The initial turbulent Mach number is

given by Mt0 =
√
3u0/c0 = 0.3, and the Reynolds number based on the Taylor

microscale is Reλ = 2ρ0u0/(µ0k0) = 30. Time is made nondimensional with respect

to the eddy turnover time τ = 2
√
3/(k0Mt0c0). The results obtained with ATI

and BW discretization in all space directions are shown in Figs. 2.10 and 2.11,

respectively, at various Courant numbers. Stable results are obtained for CFL . 5.1

for ATI, and CFL . 4.8 for BW. Loss of stability at larger time steps is due to flux

linearization and/or factorization errors, which prevent unconditional stability in

practical computations [57]. The time behavior of turbulence kinetic energy (panel

(a)) is well predicted at all Courant numbers up to the stability limit, whereas

pressure fluctuations (panel (b)) are overdamped starting at CFL ≈ 3, in both

ATI and BW. The different behavior is caused by the fact that pressure receives

contributions of both hydrodynamic and acoustic nature. As seen in Section 2.1.2,

and in particular Fig. 2.2 acoustic waves undergo significant damping at high

Courant number.
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Figure 2.10: Numerical simulations of homogeneous isotropic turbulence at Mt =
0.3, k0 = 4, Reλ = 30, with ATI-XYZ scheme. Time history of turbulence kinetic
energy (a), and pressure variance (b), and spectra of velocity (c) and pressure
fluctuations (d) at t/τ = 5. Solid lines denoted reference results obtained with
explicit time discretization at CFL = 1. Symbols denote results obtained with ATI
scheme at CFL = 1 (squares), CFL = 2 (circles), CFL = 3 (triangles), CFL = 4
(down-triangles), CFL = 5 (diamonds).
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Figure 2.11: Numerical simulations of homogeneous isotropic turbulence at Mt =
0.3, k0 = 4, Reλ = 30, with BW-XYZ scheme. Time history of turbulence kinetic
energy (a), and pressure variance (b), and spectra of velocity (c) and pressure
fluctuations (d) at t/τ = 5. Solid lines denoted reference results obtained with
explicit time discretization at CFL = 1. Symbols denote results obtained with BW
scheme at CFL = 1 (squares), CFL = 2 (circles), CFL = 3 (triangles), CFL = 4
(down-triangles),

This is even clearer in the velocity and pressure spectra, shown in panels (c)

and (d), respectively. While velocity spectra are perfectly captured at all Courant

numbers, pressure spectra undergo numerical damping, especially at intermediate

wavenumbers, which is easily understood based on the amplification factors shown

in Fig. 2.2. Given the similar performance of the two implicit methods for this test

case, ATI is certainly preferable owing to its lower computational cost, which allows

to achieve an effective speed-up over the explicit case (see Tab. 2.1) of about a factor

of three, whereas BW yields almost the same efficiency.
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2.3.2 Turbulent flow in planar channel

Channel flow is the simplest prototype of wall-bounded flows, and it has been studied

by many authors in the incompressible [11, 71, 78], as well as in the compressible

regime [28, 77, 91]. The controlling parameters are the bulk Mach number Mb =

ub/cw = 1.5 (where ub is the average velocity across the channel thickness, and cw

the sound speed at the wall temperature), and the bulk Reynolds number Reb =

2ρbubh/µw = 6000 (where ρb is the bulk density, µw the dynamic viscosity at the

wall, and h the channel half height). Initial and boundary conditions used in all the

simulations are described in Sections 2.1.3-2.1.4.

Case Mb M0 Reb Reτ ∆y+w ∆x+ ∆z+ ∆t+x ∆t+y ∆t+z ∆t+yv ∆t+ CPU

CH01-EXPL 0.1 0.1 5790 180 0.60 8.80 3.90 0.053 0.0077 0.026 1.3 0.0077 1
CH01-ATI-XYZ 0.1 0.1 5790 180 0.60 8.80 3.90 0.053 0.0077 0.026 1.3 0.077 0.15
CH01-BW-XYZ 0.1 0.1 5790 180 0.60 8.80 3.90 0.053 0.0077 0.026 1.3 0.077 0.82
CH15a-EXPL 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 1.2 0.099 1
CH15a-ATI-Y 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 1.2 0.24 0.48
CH15a-BW-Y 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 1.2 0.24 0.70
CH15b-EXPL 1.5 1.28 6000 220 0.15 10.8 4.08 0.32 0.11 0.27 0.062 0.021 1
CH15b-AVTI-Y 1.5 1.28 6000 220 0.15 10.8 4.80 0.32 0.11 0.27 0.062 0.21 0.13
CH15b-BWV-Y 1.5 1.28 6000 220 0.15 10.8 4.80 0.32 0.11 0.27 0.062 0.21 0.19

Table 2.2: Flow parameters for DNS of plane channel flow (CH). Mb and Reb
are the bulk Reynolds and Mach number, respectively. M0 = Mb

√
Tw/Tb is the

reference Mach number, introduced when discussing Eqn. (1.1). The computational
box dimension is 4πh × 2h × 4/3π for all flow cases. ∆y+w is the distance of the
first grid point from the wall, and ∆x+, ∆z+ are the streamwise and spanwise
grid spacings. The ∆t+i are the allowable time steps in the coordinate directions,
estimated according to Eqns. (1.1),(1.3). ∆t+ is the time step actually used in the
simulations. CPU is the cost to cover a unit time interval, compared to the standard
fully explicit algorithm (EXPL).

The main flow parameters are listed in Tab. 2.2. Three flow cases have been

considered, one at Mb = 0.1 (denoted as CH01), and two at Mb = 1.5 (denoted as

CH15a-b), the latter two only differing in the distance of the first grid point from the

wall. Reference DNS have been carried out with fully explicit time discretization, at

CFL ≈ 1, which are used as a basis of comparison for the ATI and BW algorithms.

In order to understand the effectiveness of the (semi-)implicit algorithms, in Tab. 2.2

we report the time step restrictions associated with the three coordinate directions,

as estimated from Eqns. (1.1), (1.3), as well as the actual time step used in the DNS,

all in wall units. As expected, in all flow cases the time step limitation in the wall-

normal direction is the most restrictive. Although larger time steps are allowed on

grounds of sole numerical stability, all DNS have been carried out at the maximum
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time step for which accurate results are obtained, which corresponds to CLF ≈ 1

for the fully explicit simulations. For ease of reference, the maximum time steps

associated with accuracy and stability restrictions are also reported in Fig. 1.1(a)

with circle and square symbols, respectively. As a first test, we consider flow at

low subsonic Mach number (CH01), for which the explicit time advancement step

is very small, hence we apply implicit treatment is all coordinate directions (XYZ).

We find that, although the wall-normal time step restrictions can be removed, the

allowed time step for accurate calculations cannot substantially larger than for the

streamwise convective restriction (see Fig. 1.1(a)). This is probably due to inherent

mesh anisotropy in DNS of wall-bounded flows. In fact, mesh spacing is over-resolved

in the wall-normal direction, hence the relevant values of the reduced wavenumber

kh are small, which allows to operate at high values of CFL with little error, recalling

(see Fig. 2.2) that the dissipation error grows with both kh and CFL. On the other

hand, the typical wall-parallel mesh spacings used in DNS are barely sufficient to

resolve the smallest scales of turbulence, hence the typical reduced wavenumbers are

higher, and time accuracy is a factor in that case. We find that both ATI and BW

are capable of boosting the time step by about a factor of ten, with efficiency gain

of 85% for ATI, and results almost indistinguishable from the fully explicit case (see

below). Still, the time step is far from that allowed by incompressible solvers (again,

see Fig. 1.1(a)). This issue will be further recalled in the concluding discussion. To

show effectiveness in removing the wall-normal acoustic time limitation is supersonic

flow calculations, in flow case CH15a the first grid point is placed sufficiently far from

the wall that the viscous limitation is ineffective. Hence, the implicit algorithms

are applied only in the wall-normal direction (Y), and viscous terms are handled

explicitly. The ATI and BW algorithms are both found to effectively suppress the

wall-normal acoustic time step limitation, and achieve the same maximum time step

for accurate flow resolution, corresponding to about CFL = 2.4. Hence, accounting

for the cost figures given in table 2.1, we find a speed-up of about a factor of two

for the ATI algorithm, and 30% gain with BW. o prove effectiveness of the implicit

treatment of the viscous terms proposed in Section (2.1.2), in flow case CH15b the

first grid point is placed closer to the wall, in such a way that the viscous time

limitation also becomes relevant, after the acoustic one. Both wall-normal time step

restrictions are suppressed through use of the AVTI and BWV algorithms, hence

the achieved time step is similar to flow case CH15a. Both algorithms here achieve

CFL ≈ 10, at a cost which is a small fraction of the fully explicit algorithm. For the

sake of comparison, in Figs. 2.12-2.14 we show the main statistics for the flow cases
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listed in Tab. 2.2. As anticipated, excellent agreement is observed between implicit

algorithms and the reference explicit solution, including pressure and temperature

fluctuations, which is especially satisfactory.
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Figure 2.12: Flow statistics for DNS of flow case CH01 (see Tab. 2.2): mean velocity
(a), Reynolds stresses (b), r.m.s. pressure (c) and r.m.s. temperature (d), for
CH01-EXPL (squares), CH01-ATI-XYZ (circles), CH01-BW-XYZ (triangles). Tτ =
qw/(ρwcpuτ ) is the friction temperature.
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Figure 2.13: Flow statistics for DNS of flow case CH15a (see Tab. 2.2): mean
velocity (a), Reynolds stresses (b), r.m.s. pressure (c) and r.m.s. temperature (d),
for CH15a-EXPL (squares), CH15a-ATI-Y (circles), CH15a-BW-Y (triangles).
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Figure 2.14: Flow statistics for DNS of flow case CH15b (see Tab. 2.2): mean
velocity (a), Reynolds stresses (b), r.m.s. pressure (c) and r.m.s. temperature (d),
for CH15b-EXPL (squares), CH15b-AVTI-Y (circles), CH15b-BWV-Y (triangles).

2.3.3 Turbulent flow in square duct

As a further step in complexity we consider the flow inside a straight duct with

square cross-section. This flow has been the subject of several DNS studies in the

incompressible regime [50, 63, 110], all limited to low Reynolds number. One of the

main difficulties that arise when dealing with square duct flows is the long averaging

time necessary to attain convergence of even the basic mean flow statistics, caused

by the extremely long typical time scales of secondary corner eddies. In fact, Pinelli

et al. [110] reported that an averaging time of about 8000h/ub was needed to have

symmetric statistics in the four quadrants of the cross section. Hence, it is clear

that efficient numerical methods are needed to study turbulent compressible flow in

ducts.
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Case Mb M0 Reb Reτ ∆y+w ∆x+ ∆z+ ∆t+x ∆t+y ∆t+z ∆t+yv ∆t+ CPU

DU02-EXPL 0.2 0.2 4410 150 0.66 8.40 0.66-3.20 0.094 0.019 0.019 1.69 0.018 1
DU02-ATI-XYZ 0.2 0.2 4410 150 0.66 8.40 0.66-3.20 0.094 0.019 0.019 1.69 0.18 0.15

Table 2.3: DNS dataset for square duct (DU) flow. Mb and Reb are the bulk
Reynolds and Mach number, respectively. M0 = Mb

√
Tw/Tb is the reference Mach

number, introduced when discussing Eqn. (1.1). The computational box dimension
is 8πh × 2h × 2h. ∆y+w is the distance of the first grid point from the wall, and
∆x+,∆z+ are the streamwise and spanwise grid spacings. The ∆t+i are the allowable
time steps in the coordinate directions, estimated according to Eqns. (1.1),(1.3). ∆t+

is the time step actually used in the simulations. CPU is the cost to cover a unit
time interval, compared to the standard fully explicit algorithm (EXPL).

Numerical simulations have been here carried out (see Tab. 2.3 for the main flow

parameters) at the same Reynolds number as Pinelli et al. [110], and sufficiently

low Mach number (Mb = 0.2) that direct comparison with incompressible data

is possible. The duct length Lx = 8h (where 2h is the length of each side of

the duct), and the time window for collecting the flow statistics is the same used

by Pinelli et al. [110]. As in plane channel flow, a spatially uniform forcing is

applied to the momentum equation to maintain a time constant mass flow rate.

Note that, unlike in channel flow, the mesh is also non-uniformly spaced in the

z direction, hence a range of mesh spacings is reported in Tab. 2.3. A reference

fully explicit numerical simulation has been carried out and used as a basis of

reference for the ATI algorithm, here applied to all coordinate directions. As

seen in Tab. 2.3, the corresponding CFL number is about unity. As in the case

of plane channel, DNS were carried out at increasing values of CFL, until deviations

from the reference data were found, to determine the maximum allowed time step

for accuracy. It appears that accurate results of the semi-implicit algorithm are

recovered up to CFL ≈ 10. Again, implicit treatment of the x direction is not

capable of fully suppressing the corresponding time step limitation, owing to the

emergence of accuracy issues. Similar to channel flow, use of the ATI algorithm

allows for about 85% cost reduction. Figure 2.15 confirms that excellent matching

of the flow statistics is found among DU02-ATI, DU02-EXPL and the data of Pinelli

et al. [110], except for some differences in the wall-normal Reynolds stress and the

pressure r.m.s., which may be due to the greater importance of acoustic waves in

the presence of a fully confined flow geometry.
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Figure 2.15: DNS of flow in square duct (see Tab. 2.3): mean velocity (a),
Reynolds stresses (b), r.m.s. pressure (c) and r.m.s. temperature (d), for DU02-
EXPL (squares), DU02-ATI-XYZ (circles). Triangle symbols denote reference
incompressible DNS data [110].

2.4 Validation of the cylindrical solver

In order to test the kinetic energy conservation properties of the cylindrical solver

we repeat the test case proposed by Morinishi et al. [96], considering the inviscid

flow through an concentric annular pipe (see Fig. 2.4) and through a standard pipe.

Lx

Ri

R

The size is Nx×Ny×Nz = 16×16×32 and the box dimensions are Lx×Ly×Lz =
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6πR×R×2πR. The mesh is uniform in the streamwise and azimuthal direction, with

hyperbolic tangent stretching in the radial direction. In the case of the concentric

annular pipe the inner radius is Ri = 0.5R. Inviscid wall boundary condition is

imposed at the walls. The flow is initialized as in Section 2.1.4 and the bulk Mach

number is Mb = 0.1. Figure 2.16 shows that turbulent kinetic energy for the explicit

time integration with different order of spatial accuracy and for ATI-YZ with second

order of accuracy. Kinetic energy is conserved both for the concentric annular pipe

flow, Fig. 2.16a and the standard pipe flow configuration, Fig. 2.16b. We also note

that despite the fact kinetic energy conservation cannot be proved in the case of

implicit time integration, very good conservation properties are observed even at

high CFL number. This extremely low damping observed also at high wavenumbers

can be explained by the fact that the mesh is always over-resolved in the azimuthal

direction, so that the reduced wavenumber kh is small and the amplification factor

of the scheme is close to unity (recall Fig. 2.2).
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Figure 2.16: Normalized turbulent kinetic energy for inviscid annular pipe (a)
and pipe (b). For the annular pipe the internal radius Ri = 0.5R. Explicit time
integration with second order spatial discretization (black solid) is compared to
fourth order (red squares) and sixth order (green circles). Implicit time discretization
ATI-YZ (blue triangles) is also shown at CFL = 25 for the annular case and CFL =
450 for the pipe.

In order to validate the pole treatment introduced in Section 2.2.3 we use the Lamb

dipole test case proposed by Verzicco and Orlandi [151]. We consider a dipole of

radius rv confined in a free-slip cylinder with radius R = 2.5rv. The field is initialized
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as follows,

ρ(r, θ)

ρref
= 1

uθ(r, θ)

uv

=





[
−C

(
J0 (βr̂)− J1(βr̂)

βr̂

)]
sin θ r̂ ≤ 1,

− sinθ
r̂2

r̂ > 1

ur(r, θ)

uv

=





(
C J1(βr̂)

βr̂

)
cos θ r̂ ≤ 1,

− cosθ
r̂2

r̂ > 1

p(r, θ)

pref
=




1 + γ Mv

2

2

{
1− C2

[
J1

2(βr̂)
(βr̂)2

+
(
J0

2(βr̂) + J1
2(βr̂)− 2, J0(βr̂)J1(βr̂)

βr̂

)
sin2 θ

]}
r̂ ≤ 1,

1− γMv
2

2r̂2

(
1
r̂2

− 2 cos(2θ)
)

r̂ > 1,

(2.56)

where J0 and J1 are Bessel functions of the first kind, β is the first positive zero

of J1 (β ≈ 3.8317), C = 2/J0(β) and uv is the maximum tangential velocity of the

vortex. The vortex Mach number is defined as Mv = uv/cref = 0.1. We consider

two different initial positions of the dipole, the first one x0 = −rv, y0 = 0 and

x0 = −0.5 rv, y0 = 0.5 rv. The mesh and the Reynolds number are the same used

by Verzicco and Orlandi [151], Ny × Nθ = 96 × 128 and Rev = 2 rvuv/ν = 1000.

Figures 2.17-2.18 show the comparison between the second order discretization with

implicit treatment of acoustic and viscous terms in the azimuthal direction AVTI-Z

and the results of Verzicco and Orlandi [151] (panels a-b-c). The present treatment

shows similar performances to the incompressible staggered flow solver, both for the

asymmetric and symmetric case, Figs. 2.17 and 2.18, respectively. In the present

case we continue the simulation after time t∗ = tuv/rv = 2, when the vortex impact

the wall, splits, and after half a revolution merges again. This cycle ends up with

the vortex dissipation due to viscosity, after several passages over the axis.
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Figure 2.17: Vorticity field of Lamb dipole at vortex Mach number Mv = 0.1
and vortex Reynolds number Rev = 2rvuv/ν = 1000. Initial position of the vortex
x0 = −rv y0 = 0, domain radius R = 2.5 rv and mesh size Ny ×Nz = 96 × 128. 22
vorticity contour levels between −1 and 1. Results are compared to Verzicco and
Orlandi [151] (a)-(b)-(c).
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Figure 2.18: Vorticity field of Lamb dipole at vortex Mach number Mv = 0.1
and vortex Reynolds number Rev = 2 rvuv/ν = 1000. Initial position of the vortex
x0 = −rv y0 = 0, domain radius R = 2.5 rv and mesh size Ny ×Nz = 96 × 128. 22
vorticity contour levels between −1 and 1. Results are compared to Verzicco and
Orlandi [151] (a)-(b)-(c).
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Figures. 2.17-2.18 show that the accuracy of the axis treatment is similar to the

one by Verzicco and Orlandi [151] and overall satisfactory. The numerical solver in

cylindrical coordinates is validated in the case of laminar compressible pipe flow.

Figure 2.19 shows the further result compared to the exact solution, obtained by

solving the equations for a laminar compressible pipe flow, as are reported in the

Appendix 5.4. Figure 2.19 shows that the cylindrical solver is capable of reproducing

the laminar compressible solution. . .
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Figure 2.19: Supersonic laminar pipe flow at Mb = ub/cw = 1.5, where ub is the
bulk velocity and cw the speed of sound at the wall. The solution obtained with the
present solver (blue circles) is compared to the exact one (gray solid lines). Velocity
and temperature profiles are show in panels (a)-(b), respectively.



Chapter 3

Results

In this chapter we report results of DNS of planar channel, pipe and duct flow, in

Section 3.1-3.2 and 3.3 respectively. In the following chapter mean quantities are

averaged according to Favre (φ = φ̃ + φ′′, φ̃ = ρφ/ρ) where φ is a generic quantity.

The superscript + denotes variables normalized in inner units, u+ = ũ/uτ y
+ = y/δv,

where uτ =
√

τw
ρw

and δv = νw/uτ are the friction velocity and the viscous length

scale respectively, while τw = µw
dũ
dy

and ρw are the viscous stress and density at the

wall. The Reynolds stress tensor components are τij = ρũ
′′

i u
′′

j .

3.1 Compressible flow in planar channel

In this Section we present DNS of compressible channel flow. All supersonic

simulations are performed using ATI-Y algorithm, while ATI-XYZ algorithm is used

for the subsonic case, denoted as CH01. Details on the computational arrangement

of the DNS are given in Tab. 3.1. For the sake of comparison, a set of incompressible

channel DNS have been carried out so as to accurately reproduce the relevant

friction Reynolds number for fair comparison of incompressible and compressible

flow statistics (see the later discussion), whose details are reported in Tab. 3.2. The

numerical algorithm used for the incompressible DNS is the same as in previous

studies from our group [11].

59
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Case Reb Mb Reτ ReτH ReτB Nx Ny Nz ∆x+ ∆z+ Mτ −Bq

CH01 5790 0.1 180 180 180 384 128 192 8.8 5.9 0.0063 9.7e-6
CH15A 6000 1.5 215 141 169 512 128 256 8.0 5.2 0.079 0.048
CH15B 15334 1.5 500 333 395 1024 256 512 9.2 6.1 0.072 0.042
CH15C 34000 1.5 1015 677 802 2048 512 1024 9.3 6.2 0.065 0.038
CH3 9760 3. 448 142 233 1024 256 512 8.2 5.5 0.11 0.14
CH15M 6000 1.5 218 141 169 120 180 120 23 7.6 0.079 0.048
CH15MF 6000 1.5 215 141 169 256 128 128 10 7.0 0.079 0.048

Table 3.1: Setup of compressible channel DNS. The computational box size is 6πh×
2h × 2πh for all flow cases, except case CH15M, which reproduces the DNS of
Morinishi et al. [96], and CH15MF with improved spatial resolution, in which the
box size is 4πh× 2h× 4/3πh. Ni and ∆x+

i are the number of points and the mesh
spacing in the i-th coordinate direction, respectively. Mτ = uτ/cw is the friction
Mach number, and Bq = qw/(ρwCpuτTw) is the heat flux coefficient. Reτ I is the
equivalent friction Reynolds number for Huangs’ transformation (H), and Brun’s
transformation (B), as defined in Eqn. (3.12).

Case Reb Reτ Nx Ny Nz ∆x+ ∆z+

INC1 4272 140 384 128 192 6.9 4.6
INC2 5248 169 384 128 192 8.3 5.5
INC3 5790 180 384 128 192 8.8 5.9
INC4 7082 222 384 128 192 11 7.3
INC5 10074 299 768 192 384 7.3 4.9
INC6 13774 393 1024 256 512 7.2 4.8
INC7 20062 550 1024 256 512 10 6.7
INC8 25534 673 2048 512 1024 6.2 4.1
INC9 30800 796 2048 512 1024 7.3 4.9
INC10 39600 999 2048 384 1024 9.2 6.1

Table 3.2: Setup of incompressible channel DNS. The computational box size is
6πh × 2h × 2πh for all flow cases. Flow cases INC7-INC10 are taken from the
dataset of Bernardini et al. [11], whereas all other simulations have been performed
in the present study.

3.1.1 Instantaneous flow field

In this Section we qualitatively analyze the instantaneous flow field through

snapshots of the channel flow in the cross-stream, wall-normal and wall-parallel

planes. Figure 3.1 shows the velocity flow field for case CH15C on the three planes,

forming a three dimensional view. The wall parallel plane xz, at y+ = h/δv = 15

from the wall, clearly highlights the presence of low and high speed streaky structures

elongated in the flow direction, similarly to what found in incompressible wall-

bounded flows [75].



3.1. COMPRESSIBLE FLOW IN PLANAR CHANNEL 61

Figure 3.1: Instantaneous flow field of flow case CH15C. Streamwise velocity
contours in the streamwise (xy), cross-stream (yz) and wall parallel (at y+ = 15)
planes are plotted.

Figure 3.2 shows the streamwise velocity fluctuations in the xz plane for flow cases

CH15A,CH15B and CH15C at y+ = 15. It is evident that near wall streaks are

highly correlated in the streamwise direction x, while they have a better defined size

in the spanwise direction. The spanwise length of the streaks definitely decreases

with the Reynolds number, when scaled to the channel half width h, while it remains

constant when scaled in wall units, λz ≈ 100δv [75]. Further considering the velocity

fluctuations in the wall normal plane allows to form a clearer qualitative picture

of the flow field, Fig. 3.3. The streamwise velocity fluctuations field, Fig. 3.3a,

shows large eddies spanning from the channel core down to the wall, as required

by Townsend eddy attached hypothesis [140]. The wall-normal velocity fluctuations

in Fig. 3.3b appear to be correlated to u′ on the upper wall and anti-correlated on

the lower wall, as found in the incompressible case [11]. On the other hand velocity

fluctuations in the spanwise direction do not show a well defined structure.
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(a)

(b)

(c)

Figure 3.2: Instantaneous flow field of flow case CH15A(a), CH15(b), CH15C(c).
Streamwise velocity fluctuations in the xz, wall parallel plane at y+ = 15. Flow
from left to right, 48 contour levels −2 < u′/(

√
ρ/ρwurms) < 2, from dark to light

shades.
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(a)

(b)

(c)

Figure 3.3: Instantaneous flow field of flow case CH15C velocity fluctuations u′(a)
v′(b), and w′(c). Streamwise velocity fluctuations are normalized with their density
scaled rms value, 48 contour levels −0.5 < u′

i/(
√

ρ/ρwuirms) < 0.5, from dark to
light shades.
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Figure 3.4: Performance in near-incompressible flow conditions: mean velocity
profile (a) and Reynolds stresses (b) for flow case CH01 (circles) and INC3 (dots)
(see Tabs. 3.1 and 3.2).

3.1.2 Compressibility transformations

The compressible solver is first tested in the nearly incompressible regime (Mb =

0.1, corresponding to flow case CH01 of Tab. 3.1), and compared with strictly

incompressible data (flow case INC3 of Tab. 3.2) in Figure 3.4. Excellent agreement

of the mean velocity and Reynolds stress distributions is recovered. The performance

in the supersonic regime is tested by comparing our DNS data with reference data of

Morinishi et al. [96], at Mb = 1.5, Reb = 6000. Three DNS are presented in Fig. 3.5,

one using the same set-up as all other DNS in terms of box size and resolution

(CH15A), one in which the same box size and mesh resolution as Morinishi et al. [96]

is used (labeled as CH15M), and one with same box size as Morinishi et al. [96], but

improved resolution (labeled as CH15MF). Overall, very similar results are obtained

for the various flow statistics, except for the peak of the streamwise Reynolds stress,

which is known to be quite sensitive to mesh resolution. It appears that when using

the same mesh resolution we very nearly match the results of Morinishi et al. [96].

However, refining the mesh has some impact on the streamwise Reynolds stress

peak, which is underestimated by about 5% in the coarser computations. On the

other hand, the effect of enlarging the computational box seems to be marginal at

this modest Reynolds number.
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Figure 3.5: Comparison with DNS data of Morinishi et al. [96] (circles): mean
velocity (a), van Driest-transformed velocity (b), mean temperature (c), and normal
Reynolds stresses (d), for flow cases CH15A (solid), CH15M (triangles), CH15MF
(dashed) (see Tab. 3.1), The thick gray lines in panel (b) denote the compound
law-of-the-wall u+ = y+, u+ = 5.2 + log y+/0.41.

Several propositions have been made in the past to remove compressibility

effects from statistics of wall-bounded flows, starting from analytical transformations

of the laminar boundary layer equations [59]. In laminar boundary layer flow,

the Howarth-Dorodnitsyn transformation exactly accounts for variations of mean

density and temperature through re-scaling of the wall-normal coordinate thus

reducing the transformed boundary layer equations to the incompressible ones. The

same mapping does not directly apply to channel flow as the momentum equation

is not homogeneous, reducing to

d

dy

(
µ
du

dy

)
+

τw
h

= 0. (3.1)

A solution of equation (3.1) can be found by introducing an effective velocity,

uV =

∫ u

0

µ

µw

du, (3.2)
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which satisfies the incompressible Poiseuille profile.

Transformation Wall distance (fI) Mean velocity (gI) Stresses (ϕI)

Howarth [59] fL = 1
N

gL = 1 NA

Viscous sublayer fV = 1 gV = RN NA

van Driest [146] fD = 1 gD = R1/2 ϕD = R

Huang et al. [62] fH = d
dy

(
y

R1/2N

)
gH = R1/2

(
1 + ũ

R
dR
dy

dy
dũ

)
ϕH = R

Brun et al. [21] fB = 1
RN

gB = 1
R1/2N

y
yB

ϕD = 1
RN2

(
y
yB

)2

Trettel and Larsson [141] (TL) fT = d
dy

(
y

R1/2N

)
gT = RN d

dy

(
y

R1/2N

)
ϕT = R

Table 3.3: Transformation rules for wall distance, mean velocity and Reynolds
stresses, according to equations (3.8), (3.19), with N = ν/νw, R = ρ/ρw. See
equation 3.8 for the definition of the mapping functions fI , gI .

The scenario is much more complicated in turbulent wall layers, in which

no analytical transformation can be found to rigorously transform the governing

equations to the incompressible ones. The only provable result pertains to the

viscous sublayer, for which the mapping (3.2) still applies [129]. As regards the

outer layer, the classical analysis is based on the work of van Driest [146]. Mean

momentum balance in turbulent channel flow requires

µ
dũ

dy
− ρ̄ũ′′v′′ = ρwu

2
τ (1− η) , (3.3)

where η = y/h is the outer-scaled vertical coordinate. Away from the wall molecular

viscosity is negligible, and further assuming η << 1, constancy of the turbulent

stress follows, hence

−ũ′′v′′ ≈
(
ρw
ρ

)
u2
τ , (3.4)

which shows that ‘compressible’ stresses should be scaled by the local mean density

to recover the incompressible behavior. Mixing length modeling of the turbulent

shear stress further leads to the classical overlap-layer equation

duD

dy
=

uτ

ky
, (3.5)
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in terms of the van Driest transformed velocity, defined as

uD =

∫ ū

0

(
ρ̄

ρ̄w

)1/2

dũ. (3.6)

Integration of (3.5) directly leads to a logarithmic layer for the transformed velocity

field with the same slope as in the incompressible case, however with an additive

constant which may in general vary with both Reynolds and Mach number. It

should be noted that, assuming for simplicity a power-law expression for the

molecular viscosity of the type µ ∼ T 0.76, it follows that the integrand of the

viscous sublayer transformation (3.2) scales as (ρw/ρ)
0.76, whereas in van Driest

outer-layer transformation the scaling is about the inverse. Hence, it appears

that van Driest transformation cannot collapse the entire wall layer, except for

the case of an adiabatic wall, since ρ/ρw ≈ 1 in the near-wall region [112]. This

condition is asymptotically approached in channel flows as Reb → ∞, since the

heat flux coefficients drops to zero (see table 3.1), hence it may be expected

that the van Driest transformation recovers its accuracy in this limit. Failure of

van Driest transformation was highlighted in previous works, in which alternative

transformations were proposed to scale the whole inner layer. Empirical evidence [62]

suggested that normalizing the mean velocity and Reynolds stress profiles with

respect to suitable semi-local wall units based on the local density and viscosity,

defined as

u∗

τ =
√
τw/ρ, δ∗v = ν/u∗

τ , (3.7)

yields better collapse of the flow statistics across the Mach number range. It can be

readily shown [141] that using the local wall units defined in Eq. (3.7) is equivalent

to introducing a mapping for the mean velocity and the wall distance, as given in

Eqn. 3.8 below. Brun et al. [21] pointed out the importance of accounting for mean

viscosity variations in the presence of high Mach number and/or hot/cold walls.

Using arguments strictly applicable to the viscous sublayer, those authors proposed

a set of transformation rules which includes a wall-normal stretching similar to

the Howarth-Dorodnitsyn transformation. To gauge the validity of the various

transformation rules, we preliminarily note that all of them can be cast in terms of

mapping functions fI , gI for wall distance and mean velocity, defined as

yI =

∫ y

0

fI dy, uI =

∫ ũ

0

gI dũ, (3.8)
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where uI and yI denote the ‘incompressible’ values obtained from various

transformations. Introducing these transformations into Eqn. (3.3), and assuming

that the turbulent shear stress distribution obeys van Driest scaling, namely

−ρũ′′v′′ = ρwτI(yI), (3.9)

we find

µ

µw

fI
gI

du+
I

dy+I
+ τ+I = (1− η) . (3.10)

Comparing Eqn. (3.10) with its incompressible counterpart then directly yields

µ

µw

fI
gI

= 1, (3.11)

which may be regarded as a constraint which defines a class of compressibility

transformations which satisfy universality of the turbulent stresses. The

mapping functions for wall distance and mean velocity corresponding to various

compressibility transformations are listed in Tab. 3.3. Of course, the only existing

transformation which satisfies the constraint given by Eqn. (3.11) is that for the

viscous sublayer. A novel velocity transformation which also satisfies Eqn. (3.11),

with the additional constraint that the transformed velocity profile collapses to the

universal incompressible profile in the overlap layer, has been recently derived by

Trettel and Larsson [141], and it is also listed in Tab. 3.3. It is interesting to note

that the transformation rule for the wall-normal distance is identical to Huang’s

transformation (hence yT = yH). An important issue related to compressibility

transformations is the definition of a suitable Reynolds number to compare the flow

statistics across Mach numbers and with incompressible data. For instance, Coleman

et al. [28] compared compressible channel statistics with the incompressible DNS

of Kim et al. [71] at approximately the same friction Reynolds number, whereas

Morinishi et al. [96] used a friction Reynolds number defined with the local viscous

length scale at the channel centerline. We argue that the answer to the ‘most

relevant’ Reynolds number should be given a-posteriori, based on the most successful

transformation. For that purpose, we define a friction Reynolds number for the

generic transformation as the ratio of the transformed wall-normal coordinate at
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the channel centerline to the viscous length scale evaluated at the wall, hence

Reτ I = yI(h)/δv, (3.12)

which clearly reduces to the conventional definition in the incompressible limit. In

the following, in an attempt to evaluate the various compressibility transformations

as fairly as possible, we compare the inner-scaled transformed distributions of the

velocity statistics with incompressible DNS data at exactly the same relevant friction

Reynolds number.

Mean velocity

As a preliminary check, in Fig. 3.6a we evaluate the viscous sublayer transformation

given in Eqn. (3.2) for the case of compressible laminar flow at Mb = 1.5 and

Mb = 3. It is clear that Eqn. (3.2) effectively maps the compressible velocity profiles

to the incompressible parabolic Poiseuille distribution. Figure 3.6b further shows

Eqn. (3.2) applied to flow case CH15C. In this case, satisfactory collapse to the

incompressible distribution is recovered in the viscous sublayer up to y+ ≈ 10, with

obvious deviations farther from the wall. The inner-scaled velocity distributions

obtained from application of the compressibility transformations listed in Tab. 3.3

are compared in Figs. 3.7-3.10 with incompressible DNS data at the same relevant

friction Reynolds number. For reference, the alleged universal incompressible wall

law is also shown.
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Figure 3.6: Assessment of laminar scaling, as from Eqn. (3.2): (a) laminar flow at
Mb = 1.5 (triangles) and Mb = 3 (circles), compared with the parabolic Poiseuille
profile (gray solid line); (b) comparison of flow case CH15C (triangles) with INC10
(dotted lines).
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As also found in previous studies [28, 129], the van Driest transformation

(Fig. 3.7) visibly undershoots the viscous sublayer linear distribution, especially

in flow case CH3, and it overshoots the incompressible velocity distribution away

from the wall, the crossing occurring at y+ ≈ 30. The van Driest transformation

yields the correct slope of the log law in the overlap layer, but the additive constant

is significantly overestimated at low Reynolds number, whereas it approaches the

incompressible value at sufficiently high Reynolds number, as also noticed by

Fernholz and Finley [40], Huang and Coleman [61], Spina et al. [134], and as

probably due to the reduction in the heat flux coefficient (see Tab. 3.1). Unlike

van Driest, Huang’s transformation, shown in Fig. 3.8, performs well in the near-

wall region, whereas it systematically overshoots the incompressible velocity profile

in the outer layer, again approaching the incompressible behavior at sufficiently

high Reynolds number. Brun’s transformation (see Fig. 3.9) has an overall similar

behavior as van Driest transformation, although absolute deviations in the outer

layer are significantly smaller. The limitations of earlier transformations are

apparently overcome by TL transformation (see Fig. 3.10), which yields collapse

to the incompressible distributions across the Reynolds and Mach number range,

throughout the wall layer.
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Figure 3.7: Mean velocity profiles transformed according to van Driest [146] (solid
lines) for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with
incompressible DNS at matching ReτD (INC4, INC7, INC10, INC6, respectively,
plotted with dotted lines). The thick gray lines denote the compound law-of-the-
wall u+ = y+, u+ = 5.2 + log y+/0.41.
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Figure 3.8: Mean velocity profiles transformed according to Huang et al. [62]
(squares) for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared
with incompressible DNS at matching ReτH (INC1, INC5, INC8, INC1, respectively,
plotted with dotted lines). The thick gray lines denote the compound law-of-the-wall
u+ = y+, u+ = 5.2 + log y+/0.41.
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Figure 3.9: Mean velocity profiles transformed according to Brun et al. [21] (circles)
for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with
incompressible DNS at matching ReτB (INC2, INC6, INC9, INC4, respectively,
plotted with dotted lines). The thick gray lines denote the compound law-of-the-
wall u+ = y+, u+ = 5.2 + log y+/0.41.
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Figure 3.10: Mean velocity profiles transformed according to TL (diamonds) for flow
cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with incompressible
DNS at matching Reτ T (INC1, INC5, INC8, INC1, respectively, plotted with dotted
lines). The thick gray lines denote the compound law-of-the-wall u+ = y+, u+ =
5.2 + log y+/0.41.

Closer scrutiny of the core part of the flow can be gained by inspecting the mean

velocity profiles in defect form, as given in Fig. 3.11. A parabolic law for the core

velocity profile of incompressible channels has recently been derived by Pirozzoli

[115]. The derivation stems from the idea that the outer-layer turbulent eddies are

not directly affected by the presence of the wall, and their size should hence scale

with the channel height and with the typical eddy velocity scale (namely the friction

velocity), whence it follows that the relevant eddy viscosity is

νt = cµuτh, (3.13)

where cµ a suitable constant. This reasoning is easily extended to compressible flows

on the token that in the presence of mean density variations the effective velocity

scale is u∗

τ (as defined in Eqn. (3.7)) rather than uτ , which yields the eddy viscosity

νt = c∗µu
∗

τh, (3.14)
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where c∗µ might differ from cµ owing to compressibility effects. From Eqn. (3.3),

neglecting the viscous term and using the eddy viscosity (3.14), one readily obtains

dũ+

dη
=

1

c∗µ

(
ρw
ρ̄

)1/2

(1− η) , (3.15)

from which it follows that the van-Driest-transformed velocity should follow a

universal parabolic law in the core part of the channel

u+
D − u+

De = − 1

2c∗µ
(1− η)2 , (3.16)

where uDe is the transformed centerline velocity. Outer defect profiles obtained

with van Driest transformation are given in Fig. 3.11, the other transformations

yielding similar results, since density and viscosity variations in the outer layer

are but moderate. Comparison with incompressible DNS (dotted lines) shows

excellent agreement throughout the outer layer, irrespective of the Reynolds and

Mach number. The DNS data are consistent with the prediction of Eqn. (3.16)

around the channel centerline, the range of validity of the parabolic fit extending

to about half of the flow domain at sufficiently high Reynolds number. No evident

compressibility effects are observed on the parabolic law constant, which in fact

coincides with its incompressible value.



76 CHAPTER 3. RESULTS

(a)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

η

u
+ D
−

u
+ D
e

(b)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

η

u
+ D
−

u
+ D
e

(c)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

η

u
+ D
−

u
+ D
e

(d)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

η

u
+ D
−

u
+ D
e

Figure 3.11: Van Driest-transformed defect velocity profiles for flow cases CH15A
(a), CH15B (b), CH15C (c), CH3(d) (solid lines), compared with incompressible
data from flow cases INC1-INC5-INC8-INC1 (dotted lines), at matching ReτH . The
dashed lines represent the untransformed velocity profiles. The ‘e’ subscript refers
to properties at the channel centerline. The gray line represent Eqn. (3.15) with
cµ = 0.0767.

Reynolds stresses and vorticity fluctuations

Here we discuss the validity of compressibility transformations as applied to the

individual components of the Reynolds stress tensor, for which direct extension of

the van Driest scaling yields

τDij =
ρ

ρw
τij. (3.17)

The same assumption also subtends the scalings of Huang et al. [62] and Trettel and

Larsson [141]. A different form of scaling was considered by Brun et al. [21], who

applied the same scaling factor used for the mean velocity to scale the turbulence
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velocity intensities, thus yielding

τBii =
ρ

ρw

(
y

yB

µw

µ

)2

τii, (3.18)

for the diagonal Reynolds stress components. The scaling rules for the Reynolds

stresses are summarized in Tab. 3.3, in the form of the ratio of the transformed to

the untransformed stresses, namely

ϕI =
τI
τ
. (3.19)

Figure 3.12 shows the van Driest-transformed Reynold stress components, compared

with the corresponding incompressible distributions. As noticed in previous

studies [28, 42], a mismatch between scaled compressible stresses and incompressible

stresses is found in the inner layer, with clear difference in the amplitude of the

streamwise stress and a shift in the position of peaks, whereas closer agreement

is found in the outer layer. It is noteworthy that the in flow case CH15C (see

panel c) a substantial layer with near-logarithmic variation of the spanwise stress is

recovered [5], which is the symptom of the emergence of effects of scale separation,

not attained in previous studies at lower Reynolds number. Figure 3.13 shows that

Huang’s scaling yields much better collapse of the compressible and incompressible

stresses distributions, in terms of both the peak amplitude and the off-wall position.

In fact, the shear stress and the wall-normal and spanwise velocity variances are

almost perfectly matched, whereas differences remain for the amplitude of the

streamwise turbulence intensity peak. Superior accuracy of Huang’s scaling as

compared to van Driest was also observed in previous studies [28, 96], but to our

knowledge this is the first time that a comparison is carried out at precisely matching

Reynolds number. Brun’s scaling is tested for the Reynolds stress tensor components

in Fig. 3.14. Note that, although the transformation (3.18) was originally meant for

the normal stresses only, we also apply it to the shear stress. The transformed

stresses shows reasonably good collapse on the incompressible simulations in the

outer layer for flow cases CH15A-B-C, but they are less accurate in the near-wall

region, similar to what observed for the van Driest transformation. As the Mach

number is increased (panel d) Brun’s transformation appears to fail both in the inner

and in the outer layer. Interestingly, Brun’s transformation seems to yield good

prediction of the amplitude of the streamwise stress peak, although its positions is

clearly shifted with respect to the ‘correct’ one. Trettel-Larsson (TL) transformation
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for the Reynolds stresses is not shown here, being identical to Huang’s.
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Figure 3.12: Reynolds stress components transformed according to van Driest [146]
(solid lines) for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), and
compared with incompressible DNS at matching ReτD (INC4, INC7, INC10, INC6,
respectively, with dotted lines). The dashed line in panel (c) denotes a logarithmic
fit of the data.
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Figure 3.13: Reynolds stress components transformed according to Huang et al. [62]
(squares) for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with
incompressible DNS at matching ReτH (INC1, INC5, INC8, INC1, respectively, with
dotted lines).
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Figure 3.14: Reynolds stress components transformed according to Brun et al. [21]
(circles) for flow cases CH15A (a), CH15B (b), CH15C (c), CH3 (d), compared with
incompressible DNS at matching ReτB (INC2, INC6, INC9, INC4, respectively, with
dotted lines).
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Figure 3.15: Vorticity fluctuations in semi-local scaling, ω′

i
∗ = ω′

iδ
∗

v/u
∗

τ (squares) for
flow case CH15A (a) CH15B (b) CH15C (c), CH3 (d), compared with incompressible
DNS at matching ReτH (INC1, INC5, INC8, INC1, respectively, with dotted lines).

The vorticity fluctuation components are presented in Fig. 3.15, scaled in semi-

local units, as defined in equation (3.7). The success in collapsing the various

distributions is particularly impressive here, except perhaps for minor differences

in the near-wall region for flow case CH3. This observation probably points to the

physical fact that the small scales of fluid motion only depend on the local mean

flow conditions, in terms of density and viscosity.

3.1.3 Mean temperature

The distribution of the mean temperature is of great importance in compressible

boundary layers, as it obviously allows prediction of the heat transfer coefficient,

but it is also necessary for accurate prediction of the skin friction coefficient, as

an accurate temperature-velocity relation allows straightforward application of the

inverse of the compressibility transformations of Tab. 3.3 to determine the mean
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velocity profile in untransformed space [40]. A widely used temperature-velocity

relationship was derived by Walz [156],

T

Tw

= 1 +
Tr − Tw

Tw

u

ue

− r
γ − 1

2
M2

e

Te

Tw

(
u

ue

)2

, (3.20)

where Tr = Te

(
1 + γ−1

2
rM2

e

)
is the recovery temperature, r = 0.89 is the recovery

factor, and the subscript e denotes properties at the edge of the wall layer (the

channel centerline in internal flow). Walz obtained Eqn. (3.20) from a simplified form

of the energy equation [146, 147], based on several assumptions including neglect

of turbulent dissipation and pressure-strain terms. Pirozzoli et al. [117] found good

agreement between Eqn. (3.20) and DNS of a M = 2.25 boundary layer over an

adiabatic wall. Duan et al. [35] carried out DNS of a supersonic boundary layer at

M = 5 with different wall temperatures, finding good agreement between Eqn. (3.20)

in adiabatic wall cases, but differences as the wall heat flux increases. Recently,

Zhang et al. [165] derived a generalized Reynolds analogy by introducing a general

recovery factor, which overcomes the limitations of Walz equation in the presence

of non-adiabatic walls

T

Tw

= 1 +
Trg − Tw

Tw

u

ue

+
Te − Trg

Tw

(
u

ue

)2

, (3.21)

where Trg = Te + rgu
2
e/(2Cp), rg = 2Cp(Tw − Te)/u

2
e − 2Prqw/(ueτw). Eqn. (3.21)

explicitly takes into account the wall heat flux qw, and it coincides with Walz relation

in the case of adiabatic walls. Figure 3.16 provides a comparison between the channel

flow DNS data and the predictions of Eqn. (3.20) and (3.21), which clearly shows

superior performance of the latter, especially at higher Mach number. It is worth

pointing out that Eqns. (3.20)-(3.21) have the same form for external and internal

flows, but in the latter case the centerline values of temperature and velocity are not

known a priori. As a consequence, these traditional temperature/velocity relations

cannot be used to explicitly determine the friction coefficient, and their engineering

relevance in this case is more limited
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Figure 3.16: Temperature-velocity relationship: mean temperature as a function
of mean velocity. In panel (a) flow cases CH15A (black, solid) -CH15B (red,
dashed)-CH15C (green, dash-dotted), in panel (b) flow case CH3 (blue, dash-dot-
dot) compared with Eqn. (3.20) (solid lines with square symbols) and with (3.21)
(solid lines with triangle symbols), with r = 0.89.

3.1.4 Length scales

We now focus on the evaluation of the typical length scales in the outer wall layer.

The integral length scales of a generic quantity ϕ in the i-th direction are defined

as the integral of the two point correlation function,

Λi
ϕ =

∫
∞

−∞

Cϕϕ (∆xi) d∆xi. (3.22)

As far as theory goes, the basic prediction of the attached eddy model for

incompressible wall layers [108, 140], is that the typical length scales should increase

linearly with the wall distance in the outer layer, which is consistent with the

existence of a logarithmic layer in the mean velocity profile. A more refined

assumption [89] is that the outer-layer length scales should scale with the local

mean shear, as follows

ℓm ∼ uτ

(
du

dy

)
−1

, (3.23)

which in fact predicts linear variation in the presence of a logarithmic mean velocity

profile. A simple eddy-viscosity ansatz led Pirozzoli [114] to predict a rather different
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scaling,

ℓ12 ∼ (uτh)
1/2

(
du

dy

)
−1/2

, (3.24)

which was shown to apply with greater accuracy than (3.23) far from the wall. The

scaling (3.24) can be readily adapted to compressible flow on the token that the main

compressibility effects are included in the variation of the local friction velocity, with

the following result

ℓ∗12 ∼ (u∗

τh)
1/2

(
dũ

dy

)
−1/2

. (3.25)

In order to gauge the accuracy of the scaling given in Eqn. (3.25), we will focus on

the spanwise spectral densities of u, defined such that

ũ′′2 =

∫
∞

0

Eu(kz) dkz, (3.26)

kz is the Fourier wavenumber in the spanwise direction. This choice is motivated by

the peculiar streaky pattern of the wall layer ‘superstructures’, which are relatively

compact in the spanwise direction, whereas they are essentially infinite in the

streamwise direction, and estimation of the actual length scale based on streamwise

two-point correlations or one-dimensional spectra is prone to large uncertainties [65].

To account for the effect of turbulence intensity variation across the wall layer, we

further consider the normalized spectral densities, defined as

Êu(kz) = Eu(kz)/ũ′′2. (3.27)

Normalized spectral densities are related to the integral length scale Λz
u through the

relation,

Λz
u = lim

kz→0
πÊu(kz). (3.28)

Figure 3.17 shows the spectra of u in pre-multiplied form, as a function of the

spanwise wavelength λz = 2π/kz, normalized with respect to either h or ℓ∗12. The

spectra at different stations, all laying in the outer layer 50/ReτH ≤ η ≤ 0.7, are

shown and compared with the spectra from incompressible simulations at matching

ReτH , at η = 0.4. The outer-scaled spectra all show a distinct bump shape with
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peak at λz ≈ h, which is suggestive of eddies having a typical spanwise size of

the order of the channel half-height, and increasing with the wall distance. When

reported in terms of the length scale (3.25), spectra at all off-wall locations are found

to collapse on another as well as on the incompressible spectra, with greater scatter

in the low-Re flow case (CH15A), in which the lowest location is at the very lower

edge of the outer layer. It is worth noting that this scaling also applies to the overlap

region (albeit small in this case), as seen in the inset of Fig. 3.17e. Compressibility

effects are further scrutinized in Fig. 3.18, which pertains to flow case CH3. In this

case, wavelengths are scaled with respect to h (a), ℓ12 (b), and ℓ∗12 (c). Comparison

of panels (b) and (c) clearly shows superior accuracy of the heuristic compressibility

correction given in Eqn. (3.25), as compared to the baseline ‘incompressible’ scaling

of Eqn. (3.24).
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Figure 3.17: Pre-multiplied power spectral densities of u in spanwise direction as a
function of λz/h (a-c-e) and λz/ℓ

∗

12 (b-d-f), for flow cases CH15A (a-b), CH15B (c-
d), CH15C (e-f). Symbols denote different distances from the wall, namely η = 0.2
(circles), η = 0.4 (gradients), η = 0.6 (deltas), η = 0.7 (squares). The dotted lines
with gradient symbols denotes the incompressible spectrum at η = 0.4 at matching
ReτH . The inset in panel (f) shows the spectra of CH15C at six stations in the
logarithmic region between y+H = 100 and y+H = 200.
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Ê

u
(k

z
)

λz/h
(b)

10-1 100 1010

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k
z
Ê
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Figure 3.18: Pre-multiplied spectral densities in spanwise direction for the
streamwise velocity component, as a function of λz/h (a), λz/ℓ12 (b) and λz/ℓ

∗

12

(c) for flow case CH3. Symbols denote different distances from the wall, namely
η = 0.2 (circles), η = 0.4 (gradients), η = 0.6 (deltas), η = 0.7 (squares). The
dotted lines with gradient symbols denotes the incompressible spectrum at η = 0.4
at matching ReτH .

Overall, we believe that the data presented above convincingly support the

validity of the theory developed by Pirozzoli [114], from which more general

conclusions can be drawn. Using the identity u∗

τ = uτ

√
ρw/ρ, and using van Driest

transformation for the mean velocity, which as previously seen is quite accurate in

the outer wall layer, Eqn. (3.25) becomes

ℓ∗12(y) ∼ (uτh)
1/2

(
duD

dy

)
−1/2

, (3.29)

which coincides with the conventional length scale (3.24), applied to the transformed

mean velocity profile. Since in the outer layer the transformed mean shear is

the same at the same outer wall distance η, it follows that the typical spanwise

length scales are not affected by compressibility. This is consistent with the

previous Fig. 3.17, 3.18, which showed collapse with incompressible spectra and

nearly identical distributions for flow cases CH15A and CH3 having very similar

effective friction Reynolds number, and with previous experimental and DNS

findings [112, 130].

3.2 Compressible flow in circular pipe

In this Section we present DNS of compressible pipe flow, at the same bulk Mach

number of channel flow simulations and approximately the same friction Reynolds

number Reτ , as reported in Tab. 3.4.
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Case Reb Mb Reτ ReτH Nx Ny Nz ∆x+ ∆z+ Mτ −Bq ∆tavuτ/h
P02 5300 0.2 184 180 256 64 256 11 4.5 0.014 0.0011 21.4
P13 6362 1.3 235 164 320 96 320 7.3 4.6 0.075 0.040 13.2
P15A 6000 1.5 223 143 512 128 320 8.2 4.4 0.082 0.051 17.8
P15B 14600 1.5 521 334 1024 128 640 9.6 5.1 0.077 0.048 19.0
P15C 31500 1.5 1030 667 2048 256 1280 9.5 5.0 0.070 0.044 9.6
P3 10300. 3. 524 147 1024 128 640 9.6 5.1 0.12 0.15 15.7

Table 3.4: Setup of compressible pipe DNS. The computational domain length is
Lx = 6πR for all flow cases apart for P13 which reproduces the DNS by Ghosh
et al. [52] with domain Lx = 10R. Nx, Ny, Nz and ∆x+, ∆y+, ∆z+ are the number
of points and the mesh spacing in the streamwise, radial and azimuthal direction,
respectively. Mτ = uτ/cw is the friction Mach number, and Bq = qw/(ρwCpuτTw)
is the heat flux coefficient. ReτH is the equivalent friction Reynolds number for
Huang’s transformation (see Tab. 3.3 and Eqn. (3.12)) and ∆tav is the averaging
time interval.

All simulations have been performed using AVTI-Z and ATI-Y algorithms

while convective limitation in azimuthal direction is relaxed as described in

Section 2.2.2. This allows to have a time step restriction comparable to the one

of channel flow. An analysis similar to the one conducted for channel flow is

performed for pipe. Attention is focused on compressibility transformations for

velocity and Reynolds stresses. The detailed analysis on the accuracy of the

compressibility transformations in Tab. 3.3 is not repeated for pipe flow, since an ad-

hoc incompressible pipe flow database would be necessary. We limit ourself to test

the TL transformation and use incompressible pipe flow data available in literature

for comparison. In the case of pipe flow passive scalar transport at Schmidt number

Sc = 0.71− 1 is also investigated.

3.2.1 Instantaneous flow field

In this Section instantaneous flow visualizations of the pipe flow are qualitatively

analyzed through snapshots of wall-parallel and cross-stream planes. Figure 3.19

shows a three dimensional visualization of the pipe flow case P15C, through

simultaneous visualization of the cross-stream and wall-parallel plane at y+ = 15. As

for channel flow we note meandering streaky structures, elongated in the streamwise

direction.
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Figure 3.19: Instantaneous flow field of flow case P15C. Streamwise velocity contours
in the streamwise (xy), cross-stream (yz) and wall parallel (at y+ = 15) planes are
plotted.

A closer look to the streaks, Fig. 3.20, for cases P15A, P15B and P15C highlights

that the near wall-region of supersonic pipe flow is qualitatively similar to the one

observed in channel flow, Fig. 3.2. The scrutiny of the velocity fluctuations allows to

form a better picture of the qualitative behavior of the flow, Fig. 3.21. Streamwise

velocity fluctuations indicate the presence of big eddies spanning half a pipe section,

from the axis to the wall. In particular, it is clearly possible to identify three

alternating low speed and high speed structures with an azimuthal size that decrease

towards the pipe axis. Similar eddies were observed in the case of channel flow,

Fig. 3.3, even if with their structure was more blurred. As for channel flow, it

appears that the wall-normal velocity fluctuations are correlated to the streamwise

ones, while a less clear organization can be observed for the azimuthal fluctuations.
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(a)

(b)

(c)

Figure 3.20: Instantaneous flow field of flow case P15A(a), P15(b), P15C(c).
Streamwise velocity fluctuations in the xz, wall parallel plane at y+ = 15. Flow
from left to right, 48 contour levels −2 < u′/(

√
ρ/ρwurms) < 2, from dark to light

shades.
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(a)

(b)

(c)

Figure 3.21: Instantaneous flow field of flow case CH15C in the cross-stream plane.
Velocity fluctuations u′(a) v′(b), and w′(c), normalized with their density scaled rms
value, 48 contour levels −0.5 < u′

i/(
√
ρ/ρwuirms) < 0.5, from dark to light shades.
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3.2.2 Compressibility transformations

As a first step the cylindrical solver is validated in the incompressible regime

comparing case P02 in Tab. 3.4 to the data by Wu and Moin [160] at low Reynolds

number. Figure 3.22 shows that agreement is satisfactory, both for mean velocity and

turbulent stresses. The supersonic simulation by Ghosh et al. [52] is also reproduced

(case P13 in Tab. 3.4), doubling the mesh resolution in x and θ with respect to Ghosh

et al. [52]. Figure 3.23 shows the averaged van Driest velocity profile and turbulent

stresses, together with Ghosh’s mean statistics. Data are in good agreement except

for a minor difference in the peak of τ11 which is known to be very sensitive to

mesh resolution and numerical scheme. Another minor discrepancy is the value

of the additive logarithmic constant, which is lower in the mean velocity profile

by Ghosh et al. [52]. This can be explained by the fact that, for the same bulk

Reynolds number, we obtain a slightly lower Reynolds number, Reτ = 235 rather

than 245, reported by those authors. This can probably be attributed to the lower

mesh resolution used by Ghosh et al. [52] in the azimuthal direction, ∆x+ = 9.5,

R∆θ+ ≈ 12.
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Figure 3.22: Comparison between P02 (black solid) and Wu and Moin [160]
(squares). (a) Mean velocity u+ (b) Turbulent stresses τij
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Figure 3.23: Comparison between P13 (black solid) and Ghosh et al. [52] (squares).
(a) van Driest transformed velocity (b) Turbulent stresses transformed according to
Huang. The thick gray lines in panel (a) represent the law of the wall u+ = y+,
u+ = 1/k log (y+) + B, k = 0.41, B = 5.2.

We note that the van Driest transformation is inaccurate, in the sense that the

transformed profile does not collapse on the incompressible log-law, with an additive

constant B ≈ 6. This result is consistent to what found in Section 3.1 for the

channel flow. The accuracy analysis on compressibility transformations performed

in Section 3.1 for channel flow is expected to yield similar results in the case of pipe,

so that we limit ourself to scrutinize the performance of TL transformation which

is expected to be most accurate. The integrated mean momentum balance equation

for pipe flow is in fact,

µ
dũ

dy
− ρ̄ũ′′v′′ = ρwu

2
τ

(
1− y

R

)
, (3.30)

with y = R−r the distance from the wall. Eqn. (3.30) is the same as in channel flow,

Eqn. (3.3), hence the same arguments that led to the derivation of TL transformation

also hold for pipe flow. Figure 3.24 shows the mean transformed velocity profile

for compressible pipe flow (Tab. 3.4) and channel flow (Tab. 3.1) compared with

incompressible pipe data. Flow cases P15A-CH15A and P3-CH3 are compared

with incompressible data by Verzicco and Orlandi [151]. Cases P15C-CH15C are

compared with data by Wu and Moin [160] at matching transformed Reynolds

number, whereas no incompressible data at matching Reτ are available for case

P15B. Figures 3.24a-3.24d highlight major differences between compressible pipe

and channel flow, starting from the buffer layer up to the core layer. In particular,

pipe flow shows higher additive logarithmic constant than channel at low Reynolds

number. These differences can be attributed to low Reynolds number effects, which
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are stronger in pipe than in channel, mainly due to the geometrical confinement.

Simulations P15B-P15C at higher Reynolds number, in Figs. 3.24b-3.24c, clearly

show that as the Reynolds number increases near-wall similarity between pipe and

channel flow is recovered, whereas a stronger wake region emerges in pipe flow.

Variations from incompressible data can be observed for cases P15A-P3, which

highlight limitations of TL transformation at low Reynolds number. This failure is

also observed, although less evident, also in channel flow (see Fig. 3.10), which also

confirms stronger persistency of low-Reynolds-number effects in pipe with respect

to channel.

(a)
100 101 1020

5

10

15

20

25

u
+ T

y+T (b)
100 101 1020

5

10

15

20

25

u
+ T

y+T

(c)
100 101 102 103

5

10

15

20

25

u
+ T

y+T (d)
100 101 1020

5

10

15

20

25

u
+ T

y+T

Figure 3.24: Mean velocity profile transformed according to TL. Pipe mean velocity
(solid) is compared to channel mean velocity (dashed) at approximately matching
ReτH , for case P15A (a) P15B (b) P15C (c) P3 (d). Dotted lines in panels (a-c-d)
represent incompressible data by Verzicco and Orlandi [151] at Reτ = 140 and by
Wu and Moin [160] at Reτ = 680. Thick gray lines represent the law of the wall,
u+ = y+, u+ = 1/0.41 log (y+) + 5.2.

Similar conclusions can be drawn from scrutiny of the Reynolds stresses,

transformed according to Huang, Fig. 3.25. The Reynolds stresses of pipe and

channel flow show large similarities across the whole wall layer as the Reynolds
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number increase. Ghosh et al. [52] found differences in the wall-normal velocity

variance of supersonic pipe and channel flow, which are only minor in our case,

Fig. 3.25a. At moderately high Reynolds number, Figs. 3.25b-c pipe and channel

flow data are almost indistinguishable except for a minor difference in the streamwise

variance peak, which is higher for the channel flow. This has also been observed by

the recent study performed by Chin et al. [26], who observed considerable agreement

in the Reynolds stresses of incompressible channel and pipe flow with a higher

peak of the streamwise variance peak for the channel flow at Reτ ≈ 1000 − 2000.

Cases P15A-P3 in Fig. 3.25a-d show an opposite trend, with higher streamwise

peak for the pipe flow. The different peak growth with Reynolds number between

channel and pipe may be a hint of different outer/inner layer interaction in the

two flows [1]. Comparison with the incompressible stresses from [151, 160] shows

excellent agreement with increasing ReτH , except for the streamwise variance peak

which, as for the channel flow, is constantly higher than the incompressible one and

seems the only genuine compressibility effect.
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Figure 3.25: Streamwise turbulent stress transformed according to Huang. Pipe
flow data (solid) are compared to channel flow (dashed) at approximately matching
ReτH , for case P15A (a) P15B (b) P15C (c) P3 (d). Dotted lines in panels (a-c-d)
represent incompressible data by Verzicco and Orlandi [151] at Reτ = 140 and by
Wu and Moin [160] at Reτ = 680.

Closer understanding of differences between pipe and channel can be gained

from inspection of the core region. The fact that in the outer region turbulent

eddies are scarcely influenced by the wall led Pirozzoli [115] to use the hypothesis

of constant eddy viscosity in this region, which is used to derive a parabolic law

for velocity in the core part of the channel. In Section 3.1 we showed that the

van Driest transformed mean velocity profiles follow the universal parabolic law,

given in Eqn. (3.16). Figure 3.26 shows the van Driest velocity profile in defect

form as a function of η = y/R. Good agreement with the universal parabolic law is

observed at high Reynolds number (Fig. 3.26c), although somehow better agreement

was found for channel flow, recalling Fig. 3.11. The cause may be found in the

fact that the constant cµ was estimated [115] by fitting Princeton Superpipe data,

at much higher Reynolds number than the present DNS. Although Eqn. (3.16) is

formally derived for van Driest transformed velocity, TL transformation also follows
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the incompressible parabolic law, since at the pipe core mean density gradients are

small and TL transformation is close to van Driest.
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Figure 3.26: van Driest (black solid) and TL (red squares) transformed mean velocity
as a function of η = y/h for cases P15A (a), P15B (b), P15C (c) and P3 (d). The gray
line represents Eqn. (3.16), with c∗µ = 0.0625. The subscript ’e’ denotes properties
at the pipe centerline.

3.2.3 Mean temperature and vorticity fluctuations

In Section 3.1 we showed that semi-local scaling can be used to map compressible

vorticity fluctuations to ”incompressible” ones with reasonable accuracy. Figure 3.27

shows mean vorticity fluctuations in semi-local scaling compared to compressible

channel flow data. The agreement between vorticity fluctuations in pipe and channel

is clear, except for P3-CH3, for which higher mean temperature variation occurs.
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Figure 3.27: Vorticity fluctuations in semi-local scaling ωi∗
i = ω

′

iδ
∗

vu
∗

τ for pipe (solid)
and channel (dashed) flow, cases CH15A-P15A (a), CH15B-P15B (b), CH15C-P15C
(c) and CH3-P3 (d).

A key point in the study of compressible wall-bounded turbulence is the

temperature velocity relation. Successful definition of a relation between

temperature and velocity in fact allows to use compressibility transformations the

other way round (mapping incompressible velocity into compressible), thus leading

to van Driest II like transformations for the friction coefficient. Classical Walz [156]

relation, Eqn. (3.20), is known to be inaccurate in the case of isothermal boundary

layer [35], while the relation obtained by Zhang et al. [165], Eqn. (3.21), explicitly

take into account thermal wall flux and it has been tested for isothermal boundary

layers [35, 165] and channel flow [91], proving its validity. Figure 3.28 shows the mean

temperature profile as a function of velocity for pipe flow, compared to Zhang et al.

[165] relation, Eqn. (3.21). The temperature-velocity relationship for channel flow

is also shown for comparison. Maximum temperature in pipe flow is higher than in

channel, for given bulk Mach number, meaning that circular geometry yields higher

aerodynamic heating. Zhang’s relation confirms its accuracy also in the case of pipe

flow, with better agreement as the Reynolds number increases.
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Figure 3.28: Temperature-velocity relationship: mean temperature as a function of
mean velocity. Pipe flow (solid) is compared with channel (dashed). Thick gray line
represents Zhang et al. [165] relation, Eqn. (3.21). Panel (a) P15A, (b) P15B, (c)
P15C, (d)P3.

3.2.4 Length scales and velocity spectra

As pointed out in Section 3.1.4 the effect of compressibility on turbulent length

scales is not well understood. Pirozzoli [114] proposed a scaling for the integral

length scales in the outer part of the wall layer, which is based on local mean

shear and local friction velocity, Eqn. (3.25). In this work we limit to study

the integral length scale of the streamwise velocity through normalized spectral

densities, Eqn. (3.27). Normalized spectral densities and integral length scales are

related through Eqn. (3.28). Pirozzoli [119] recently performed a survey on the

integral length scales in different wall-bounded turbulent flows using normalized

energy spectra. As for pipe flow, this analysis is limited to experimental data,

both in azimuthal and streamwise direction. It is known that obtaining spectra

in the azimuthal direction is rather difficult, since Taylor hypothesis cannot be

used, while spectra in the streamwise direction do not contain clear information

on the integral length scales since momentum streaks in the flow direction are
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essentially infinite [64]. Hence, DNS data may help to shed light on the scaling of

the integral length scales. Figure 3.29 shows normalized spectra of the streamwise

velocity at different stations from the wall all laying in the outer layer region,

50/ReτH ≤ η ≤ 0.7. Figures. 3.29a-d-g-l show that spectra at different wall stations

have peaks which are spread out in terms of λz/R. For this purpose we introduce the

wavenumber k̃z = kz
R
r
, in which a geometric factor is taken into account, and the

corresponding associated wavelength λ̃z = 2π/k̃z. Figures 3.29b-e-h-m clearly show

that spectral peaks occur at the same normalized wavelength λ̃z

R
≈ 1, that is energy

containing eddies have size which scale as λ̃z ∼ R, in the outer layer. In order to

derive a scaling similar to Eqn. (3.25) for pipe flow we reason that at the pipe core

large structures must shrink due to space limitations, and their size should diminish

towards the axis. Ahn et al. [2], Lee et al. [78] also pointed out differences between

large scale structures in pipe and channel flow, proving that their time decay is

faster in pipe than in channel. For this reason we modify Eqn. (3.25) substituting

h with r,

ℓ∗12 ∼ (u∗

τr)
1/2

(
dũ

dy

)
−1/2

. (3.31)

Figures 3.29c-f-i-n show streamwise velocity spectra as a function of λ̃z

ℓ∗
12

.

Incompressible channel flow spectra (flow cases in Tab. 3.2) are also plotted for

comparison. Apart for cases P15A-P3 which share a relatively low ReτH the

agreement between compressible pipe and incompressible channel is striking, which

support the validity of Eqns. 3.25-3.31 as scaling of the integral length scales for

channel and pipe flow. The successful collapsing of the spectra in Figs. 3.29c-f-i-n

imply that integral length scales are not affected by compressibility, as found for

compressible channel flow also.
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Figure 3.29: Pre-multiplied power spectral densities of u in azimuthal direction as
a function of λz/h (a-d-g-l), λ̃z/R (b-e-h-m) and λ̃z/ℓ

∗

12 (c-f-i-n). Symbols denote
different distances from the wall, namely η = 0.2 (circles), η = 0.4 (gradients), η =
0.6 (deltas), η = 0.7 (squares). Dotted lines in figures (c-f-i-n) denote incompressible
channel flow at matching ReτH , at η = 0.4.

3.2.5 Passive scalar transport

In this Section we focus on passive scalar transport in compressible pipe flow. We

consider two passive scalars with Schmidt number Sc = 1, 0.71 for each flow case in

Tab. 3.4, so as to compare passive scalar flow statistics with velocity and temperature
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profiles respectively. The mean passive scalar balance equation reads,

ρα
dφ̃

dy
− ρ̄φ̃′′v′′ = ρwφ

2
τ

(
1− y

R

)
, (3.32)

where α = µ

ρSc is the passive scalar diffusivity and φτ = αw

uτ

∂φ̃
∂y

∣∣
w

= µw

ρwuτSc
∂φ̃
∂y

∣∣
w

is the friction scalar. It is clear that for Sc = 1 Eqn. (3.32) is identical to the

mean momentum balance equation, (Eqn. (3.30)), upon substitution of φ with the

streamwise velocity u. This observation leads to expect that TL transformation for

velocity also applies to Eqn. (3.32), thus allowing to transform passive scalar values

into their incompressible counterpart. Hence by analogy with Eqn. (3.8) we propose,

yI =

∫ y

0

fI dy, φT =

∫ φ̃

0

gTdφ̃, (3.33)

where fT and gT are the same functions used to transform mean velocity, reported

in Tab. 3.3. Figure 3.30 shows mean passive scalar profiles transformed according

to Eqn. (3.33), in wall units.
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Figure 3.30: Mean values of passive scalars transformed according to TL, at
Schmidt number Sc = 1 (solid) and Sc = 0.71 (dashed) for cases P15A (a), P15B (b),
P15C (c), P3 (d). Kader [68] fit is also shown (blue squares). Dotted lines in panel
(c) represents passive scalars in incompressible channel flow from Pirozzoli et al. [118]
at corresponding Schmidt number and approximately matching Reynolds number.
Thick gray lines indicate temperature profile in wall units, T+ = (T − Tw)/Tτ .

The transformed mean scalar distributions are also compared to incompressible

passive scalar fits proposed by Kader [68] for internal flows. Kader’s fits were

obtained from high- Reynolds-number experiments, hence it is not surprising that

they do not match low-Reynolds-number flow cases P15A-P3, Figs. 3.30a-d. On the

other hand high-Reynolds-number data( P15B-P15C Figs. 3.30b-c) show satisfactory

agreement at both Schmidt numbers. Figure 3.30c also reports passive scalar

distributions from incompressible channel flow at matching ReτH from the database

by Pirozzoli et al. [118]. Agreement with incompressible channel flow is also

excellent except for the core region, where pipe flow exhibits stronger wake region.

Temperature profiles in wall units are also shown in Fig. 3.30 to highlight differences

between temperature and passive scalar profiles. The main differences are observed

as the Mach number increases, Fig. 3.30d, as the relative importance of viscous

dissipation increases with Mach number. The successful transformation of the mean
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passive scalar profile also supports for the use of Huang’s transformation for the

passive scalar fluctuations. We define the transformed passive scalar fluctuations

as,

φ̃′′2
H =

ρ

ρw
φ̃′′2 ,

(
φ̃′′2u′′2

)
H
=

ρ

ρw
φ̃′′2u′′2 ,

(
φ̃′′2v′′2

)
H
=

ρ

ρw
φ̃′′2v′′2 (3.34)

Figure 3.31 shows passive scalar fluctuations for flow case P15C in wall units scaled

according to Eqn. (3.34). Transformed statistics are compared with passive scalar

in incompressible channel flow [118] at approximately matching ReτH . The main

difference is found in the peak value of the fluctuations, as for the transformed

streamwise velocity variance, Fig. 3.25. We reason that the difference in the peak

is due to compressibility effects rather than differences between channel and pipe

flow, which for velocity variances show similar peaks [78]. This is somehow a clue

that pressure, which is absent in passive scalar transport, does not play any role in

the breakdown of Huang’s scaling for the streamwise velocity variance peak.
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Figure 3.31: Passive scalars fluctuations transformed according to Huang, at
Schmidt number Sc = 1 (solid) and Sc = 0.71 (dashed) for case P15C. Dotted
lines represents passive scalars fluctuations in incompressible channel flow [118], at
corresponding Schmidt number and approximately matching Reynolds number.

As done for the mean velocity we now focus our attention on passive scalar in the

core part of the channel flow. Pirozzoli et al. [118] recently showed that a universal

parabolic profile holds for passive scalar fields in the core part of incompressible

channel flows. The same reasoning that led us to Eqn. (3.16) can be applied to

passive scalar transport,

φ+
D − φ+

De = − 1

2c∗µ
(1− η)2 , (3.35)

where φD is the passive scalar transformed according to van Driest. The subscript e

denote quantities at the pipe axis. Eqn. (3.35) states that the van Driest transformed

passive scalar follows the incompressible universal parabolic law derived by Pirozzoli
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et al. [118]. Figure 3.32 shows the passive scalars at Sc = 1, 0.71 in defect form

compared to Eqn. (3.35). All flow cases follow the universal parabolic law down to

η ≈ 0.2− 0.3.
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Figure 3.32: van Driest transformed mean scalar profiles as a function of η = (1 −
r)/R for flow cases P15A (a), P15B (b), P15C (c) and P3 (d), at Schmidt number
Sc = 1 (solid) and Sc = 0.71 (squares). The gray line represents Eqn. (3.16), with
c∗µ = 0.093. The subscript ’e’ denotes quantities at the centerline.

The integral length scales of the passive scalar field are scrutinized through

azimuthal spectral densities, Fig. 3.33. The spectra show that φ is highly correlated

with the streamwise velocity, as they follow the same scaling as in Fig. 3.29. The

peak of the spectral densities is located at λ̃z ≈ R, which highlights that this is the

size of energy containing eddies. The definition of the characteristic length l∗12 of

Eqn. (3.29) is properly modified for passive scalar field,

ℓ∗12(y) ∼ (φτr)
1/2

(
dφD

dy

)
−1/2

, (3.36)

where φD is the mean passive scalar profile transformed according to van Driest.

Figures 3.33(c-f-i-n) show that the integral length scales of the passive scalar grow
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according to Eqn. (3.36), similarly to what found for velocity. Comparison with

incompressible passive scalar spectra would be necessary to assess that Eqn. (3.36)

takes into account compressibility effects, nevertheless since we have shown that

compressibility transformations for velocity accurate hold also for passive scalars we

expect a proper collapsing of the integral length scales as well.
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Ê

φ
(k

z
)

(e) 10-1 100 101 1020

0.2

0.4

0.6

0.8

1

λ̃z/R

k
z
Ê
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Figure 3.33: Pre-multiplied power spectral densities of the passive scaler φ at
Sc = 1 in azimuthal direction as a function of λz/h (a-d-g-l), λ̃z/R (b-e-h-m) and

λ̃z/ℓ
∗

12 (c-f-i-n). Symbols denote different distances from the wall, namely η = 0.2
(circles), η = 0.4 (gradients), η = 0.6 (deltas), η = 0.7 (squares).
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3.3 Compressible flow in rectangular duct

DNS of compressible rectangular duct flow have been carried out at three bulk Mach

numbers, Mb = 0.2, 1.5, 3, (see Tab. 3.5). For the flow case at Mb = 1.5 we carried

out DNS by changing the aspect ratio (A) in the range A = 1 − 4, whereas for

the other flow cases only a square cross-section is considered. Fig. 3.34 indicates the

duct flow geometry in the cross-stream section, with the notation that will be used

in the following. The side length in y direction is fixed to 2h, whereas the side length

in z direction depends on the aspect ratio, 2hA, and for this reason z coordinate

will be reported in non-dimensional form z/(hA) in the following. Fig. 3.34 also

shows red lines at constant z/(hA) which will be used as reference sections.

Y
/h

0

0.5

1

1.5

2

Z/(hAR)
0 0.5 1 1.5 2

Figure 3.34: Sketch of the duct flow domain. The duct height in y direction is fixed,
2h, whereas the spanwise width in z direction depends on the aspect ratio. Red
lines indicate test sections at z/(hA) = 0.2, 0.4, 0.8, 1.

The maximum friction Reynolds number achieved is Reτ ≈ 1000 at Mb = 0.2,

which, to our knowledge, is the highest achieved so far [164]. Supersonic flow

simulations are carried out using ATI-YZ algorithm, whereas ATI-XYZ is used

for the subsonic DNS. As for plane channel and pipe flow attention is focused
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on studying the validity of compressibility transformations in the case of three

dimensional mean flow.

Case A Mb Reb Reτ ReτH Nx Ny Nz Mτ −Bq ∆tavuτ/h
D02A-A1 1 0.2 4410 150 145 512 128 128 0.082 0.001 702.0
D02B-A1 1 0.2 40000 1054 1035 2048 512 512 0.0008 0.0008 64.4
D15-A1 1 1.5 6000 228 102 512 128 128 0.082 0.045 264.2
D15-A2 2 1.5 6000 224 101 512 128 256 0.081 0.046 336.2
D15-A4 4 1.5 6000 221 100 512 128 512 0.080 0.047 354.5
D3 -A1 1 3. 9760 483 54 1024 256 256 0.12 0.13 68.0

Table 3.5: Compressible duct flow dataset. A is the aspect ratio of the duct.
Mb = ub/cw and Reb = 2ρwubh/µw the bulk Mach and Reynolds number respectively.
Reτ = h/δv and ReτH = yH(h)/δv are the untransformed and transformed
friction Reynolds number. Ni is the number of mesh points in the i−th direction,
Mτ = uτ/cw the friction Mach number and Bq the non-dimensional heat flux. Box
dimensions are 6πh× 2h× 2hA for all cases. ∆tav is the averaging time interval.

3.3.1 Instantaneous flow field

In this Section the instantaneous flow field of the duct flow is qualitatively described

through the scrutiny of the cross-stream and streamwise planes. Figure 3.35 shows

a three dimensional sketch of the duct flow case D02B-A1, obtained through

simultaneous visualizations of the cross-stream and streamwise planes at y+ = 15.

As in channel and pipe flow, Figs. 3.1-3.19, the streamwise velocity in the near wall

region is characterize by streaky structures , elongated in the flow direction.
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Figure 3.35: Instantaneous flow field of flow case D02B-A1. Streamwise velocity
contours in the cross-stream (yz) and wall-parallel (at y+ = 15) planes are plotted.

Figure 3.36 shows the near wall streaks for the supersonic cases D15A-A1, D15-

A2 and D15-A4, with different aspect ratio. Velocity streaks observed in duct flow

are qualitatively similar to channel and pipe flow, with the main difference that

velocity goes to zero at the side walls. It seems that streaks are barely modified

by the presence of the side walls, as variation from the classical streaky pattern

only occurs very close to the sides. Figure 3.36a shows that for A=1 the duct

scarcely contains a couple of streaks, at this Reynolds number, whereas their number

increases with the aspect ratio and the flow pattern of case D15-A4 almost resembles

the planar channel flow, Fig. 3.36.
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(a)

(b)

(c)

Figure 3.36: Instantaneous flow field of flow case D1515A-A1(a), D15-A2(b), D15-
A4(c). Streamwise velocity fluctuations in the xz, wall-parallel plane at y+ = 15.
Flow from left to right, 48 contour levels −2 < u′/(

√
ρ/ρwurms) < 2, from dark to

light shades.

Figure 3.37 shows the mean velocity fluctuations in the cross-stream plane for

flow case D02B-A1. Streamwise velocity fluctuations are characterized by large

eddies, which occupy the duct half section, from the core region down to the wall.

The high correlation between the streamwise velocity fluctuations and the wall-

normal ones, observed for channel and pipe flow is less evident for duct flow 3.37b.

The spanwise velocity fluctuations w′ in Fig. 3.37c do not show an organized

structure and attached eddies [140] cannot be visualized.
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(a)

(b)

(c)

Figure 3.37: Instantaneous flow field of flow case D02B-A1 velocity fluctuations
u′(a) v′(b), and w′(c). Streamwise velocity fluctuations are normalized with their
density scaled rms value, 48 contour levels −0.5 < u′

i/(
√

ρ/ρwuirms) < 0.5, from
dark to light shades.
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3.3.2 Compressibility transformations

In the case of rectangular duct flow both global and local wall units can be defined

[50]. The global stress at the wall can be derived from mean momentum balance,

τw = ρwu
2
τ = −1

4
HΠ, (3.37)

where Π is the imposed pressure gradient, and H = 4A
P

the hydraulic diameter,

A and P being the area and the perimeter of the duct section, respectively. The

global viscous length scale is defined as δv = νw/uτ . Local friction velocity and

viscous length scale can be defined based on the mean viscous stress at the wall, and

denoted as uτl and δvl in the following. In order to test the validity of compressibility

transformations, we reason on the mean momentum balance equation for the duct

flow, which reads,

∂ρũṽ

∂y
+

∂ρũw̃

∂z
=

∂

∂y

(
µ
∂ũ

∂y

)
+

∂

∂z

(
µ
∂ũ

∂z

)
− ∂ρũv

∂y
− ∂ρũw

∂z
− Π. (3.38)

It is clear that the same arguments leading to the derivation of the TL transformation

cannot be directly applied to Eqn. (3.38). Nevertheless, it is reasonable to assume

that at the duct bisector z/(Ah) = 1, where ∂
∂z

≈ 0 and v ≈ 0, the TL

transformation still applies, since Eqn. (3.38) reduces to the mean momentum

balance for planar channel flow. We first test TL transformation at the duct bisector,

for the supersonic flow cases reported in Tab. 3.5. Figure 3.38 shows TL transformed

velocity in local and global wall units, compared to transformed channel flow profiles

and to the nearly incompressible duct flow data, D02A-A1. We note that the profiles

scaled in global units do not follow the universal law of the wall u+ = y+ in the

viscous sublayer. This result was also observed by Gavrilakis [50], but less evident

in the incompressible case. We note in fact that the deviation from the universal

law of the wall u+ = y+ becomes more evident as the Mach number increases.

This deviation is small for case D02A-A1 (Fig. 3.38b) and it becomes evident for

D3-A1 (Fig. 3.38d). Hence, in the following we will mainly use local wall units.

Figure 3.38a shows that D02A-A1 profile is very close to the transformed planar

channel case CH15A. The transformed duct velocity profile of case D15-A1 shows

only minor differences with D02A-A1, while increasing the aspect ratio is sufficient

to have nearly perfect agreement with CH15A, Fig. 3.38a. Major differences with the

corresponding channel flow cases are found at Mb = 3, Fig. 3.38c-d. It is known that
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increasing the Mach number, at fixed Reynolds number, causes relaminarization of

the flow, with increased thickness of the viscous sublayer. In the case of a confined

geometry, such as square duct flow, thickening of the viscous sublayer causes stronger

side walls effects, so that the transformed mean velocity profile, differs from the

incompressible case at matching local ReτH = yT/δvl.
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Figure 3.38: TL transformed velocity profile at duct bisector z/(Ah) = 1, for
cases D15-A1, D15-A2, D15-A4 (a-b) and M3-A1 (c-d). Quantities in panels
(a-c) and (b-d) are normalized by local and global wall units respectively. In
panels (a-b) A=1 (black solid) AR=2 (red dashed) AR=4 (blue dash-dotted).
Gradient symbols represent case D02A-A1. Square symbols represent planar
channel flow data CH15A-CH3. Gray lines indicate the law of the wall u+ = y+,
u+ = 1/0.41 log (y+) + 5.2.

Although, accordingly to Eqn. (3.38), TL transformation should not hold

approaching the wall, we test it to establish the minimum wall distance from which

it can be applied. Figure 3.39 shows TL transformed velocity profile at different

distances z/(Ah) towards the wall, from which we note that different accuracy

is found depending of the aspect ratio. For case D15-A1 the transformation is

reasonably accurate up to z/(Ah) = 0.4 (Fig. 3.39c), then it diverges from case

D02A-A1. Flow case D15-A4 also follows with good accuracy the plane channel
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profile up to z/(Ah) = 0.4 (Fig. 3.39c), while minor divergence is observed at

z/(Ah) = 0.2 (Fig. 3.39d) It is surprising to note that the transformed velocity

profile of D3−A1 exhibits higher accuracy near the wall than at the duct center,

probably owing to the fact that compressibility effects are smaller towards the side-

wall.
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Figure 3.39: TL transformed velocity profile at z/(hA) = 0.8 (a), z/(hA) = 0.6
(b), z/(hA) = 0.4 (c), z/(hA) = 0.2 (d) from the wall, for cases D15-A1
(black solid), D15-A2 (red dashed), D15-A4 (blue dash-dotted) and D3-A1 (green
dotted). Gradient and squares symbols represent case D02A-A1 and CH15A,
respectively.

The overall picture that emerges from Fig. 3.39 is that TL transformation can be

properly used in the whole duct section, with minor deviations from incompressible

data. Velocity profiles of v/ue and w/ue, where ue is streamwise velocity, at the duct

centerline, are reported in outer units at different z/(hA) stations from the walls,

Figs. 3.40-3.41. Surprisingly, v and w for cases D15-A1 and D02A-A1 are not very

different, which is an evidence that compressibility affects on secondary motions

are quite limited at Mb = 1.5. Some differences between D3-A1 and D02A-A1 are

observed in the v and w profiles, at least towards the duct core (Figs. 3.40(a-b-c-d)).

As the wall is approached (Figs. 3.40(e-f) and Fig. 3.41) the cross-stream velocity
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components are in some way similar, for the same aspect ratio (cases D02A-A1,

D15-A1 and D3-A1) which seems a clue that secondary motions are insensitive to

the Mach number. On the contrary, large differences are observed at different aspect

ratios, cases D15-A1, D15-A2, D15-A4, thus secondary motions are, as expected,

affected by the shape of the cross-stream section.
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Figure 3.40: Velocity components in the cross-stream plane, v/ue (a-c-e) and w/ue

(b-d-f). ue is the centerline streamwise velocity. Profiles are taken at z/(hA) = 1
(a-b), z/(hA) = 0.8 (c-d), z/(hA) = 0.6 (e-f) from the wall. Case D15-A1 (black
solid), D15-A2 (red dashed), D15-A4 (blue dash-dotted) D3-A1 (green dotted)
and D02A-A1 (gradient symbols).
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Figure 3.41: Velocity components in the cross-stream plane, v/ue (a-c) and w/ue

(b-d). ue is the centerline streamwise velocity. Profiles are taken at z/(hA) = 0.4
(a-b), z/(hA) = 0.2 (c-d) from the wall. Case D15-A1 (black solid), D15-A2
(red dashed), D15-A4 (blue dash-dotted) D3-A1 (green dotted) and D02A-A1
(gradient symbols).

The accuracy of Huang transformation for Reynolds stresses can be gauged from

inspection of Figs. 3.42-3.43-3.44, which show density-scaled velocity variances in

direction x, y and z respectively at different wall stations z/(hA). Figures 3.42(a-

b), 3.43(a-b) 3.44(c-d) show that near the duct centerline, z/(hA) = 1 and

z/(hA) = 0.8, density scaled variances collapse on the reference profiles of D02A-

A1. Consistently with what found for plane channel and pipe flow, the only

discrepancy that can be observed is in the peak of the streamwise velocity variance

of D15-A1 and D3-A1, which does not collapse on D02A-A1 (Fig. 3.42a-b). On

the other hand, we note the agreement of the streamwise velocity variance duct

flow case D15-A4 and planar channel case CH15A, also in the proximity of the

wall Figs. 3.43(a-b-c-d) (the same was true for mean streamwise velocity, Fig. 3.39).

This highlights that a relatively small aspect ratio (A=4) is necessary for obtaining

streamwise duct flow statistics resembling those of planar channel flow. The same

conclusion does not hold for the velocity variances in the cross-stream plane, which
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always differ from the plane channel case, especially for w, Fig. 3.44.
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Figure 3.42: Streamwise velocity variance transformed according to Huang. Profiles
are taken at z/(hA) = 1 (a), z/(hA) = 0.8 (b), z/(hA) = 0.6 (c), z/(hA) =
0.4 (d), z/(hA) = 0.2 (e) from the wall. Case D15-A1 (black solid), D15-A2
(red dashed), D15-A4 (blue dash-dotted), D3-A1 (green dotted), and D02A-A1
(gradients). Planar channel data CH15A are indicated by square symbols.
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Figure 3.43: v velocity variance transformed according to Huang. Profiles are
taken at z/(hA) = 1 (a), z/(hA) = 0.8 (b), z/(hA) = 0.6 (c), z/(hA) = 0.4 (d),
z/(hA) = 0.2 (e) from the wall. Case D15-A1 (black solid), D15-A2 (red dashed),
D15-A4 (blue dash-dotted), D3-A1 (green dotted) and D02A-A1 (gradients).
Planar channel data CH15A are indicated by square symbols.
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Figure 3.44: w velocity variance transformed according to Huang. Profiles are
taken at z/(hA) = 1 (a), z/(hA) = 0.8 (b), z/(hA) = 0.6 (c), z/(hA) = 0.4 (d),
z/(hA) = 0.2 (e) from the wall. Case D15-A1 (black solid), D15-A2 (red dashed),
D15-A4 (blue dash-dotted), D3-A1 (green dotted), D02A-A1 (gradients). Planar
channel data CH15A are indicated by square symbols.

3.3.3 Effect of Reynolds number variation

Although DNS of incompressible duct flow at different Reynolds number are

available in literature [50, 63, 164], Reynolds number effects on the mean flow

statistics have not been study systematically. For that purpose, we use flow cases

D02A-A1 and D02B-A1 to analyze Reynolds number effects in duct flow. In order
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to perform a complete study, additional DNS results in the friction Reynolds number

range Reτ = 150−1000 would be necessary, although we believe that some Reynolds

number trend can be inferred from these low and high Reynolds number simulations,

D02A-A1 and D02B-A1. Figures. 3.45-3.46 show the mean velocity profiles in local

and global wall units. As pointed out in Section 3.3.2 the profiles scaled in global

wall units do not follow the viscous sublayer law, which indicates that near the wall

the appropriate length scale is the local viscous length scale rather than the global

one. The deviation in the incompressible case is only minor, but independent from

the Reynolds number. The mean velocity profiles in global wall units (Figs. 3.45(a-

b) 3.46(a-b) ) roughly follow the log law, u+ = 1/k log y+ + B with k = 0.41 and

B = 5.1, whereas in local wall units we find B = 4.3. We also note that the wake

region is much stronger than in planar channel, starting at y+ ≈ 200 (Figs. 3.45(a-

b) ). It appears that differences between square duct and plane channel become

more evident as the Reynolds number increases. The velocity at the duct bisector

nearly matches the planar channel profile for case D02A-A1 (Fig. 3.45a), whereas

case D02B-A1 differs substantially. This observation confirms that the large-scale

structures, that emerge at higher Reynolds number, are strongly influenced by the

duct corners. Approaching the wall in the z direction the velocity profile is not

monotone and the wake region is driven downward, due to secondary vortices which

bring low momentum fluid from the wall. We note that this velocity lag occurs at

approximately the same position from the wall (z/(Ah) = 0.6, Fig. 3.45e) for D02A-

A1 and D02B-A1, but it becomes more intense as Reynolds number increases. This

means that secondary vortices are intensified but barely move with the Reynolds

number.
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Figure 3.45: Streamwise velocity profile in local (a-c-e) and global wall units (b-d-f)
at z/(hA) = 1(a), z/(hA) = 0.8 (b), z/(hA) = 0.6 from the wall, for cases D02B-
A1 (black solid), D02A-A1 (gradients). Dotted lines represent incompressible
planar channel data from Bernardini et al. [11] at Reτ = 140 − 1000. Gray lines
represents the universal law of the wall, u+ = y+, u+ = 1/0.41 log (y+) + 5.2 and
u+ = 1/0.41 log (y+) + 4.3.
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Figure 3.46: Streamwise velocity profile in local (a-c) and global wall units (b-d) at
z/(hA) = 0.4 (a-b), z/(hA) = 0.2 (c-d) from the wall, for cases D02B-A1 (black
solid), D02A-A1 (gradients). Gray lines represent the universal law of the wall,
u+ = y+, u+ = 1/0.41 log (y+) + 5.2 and u+ = 1/0.41 log (y+) + 4.3.

A widely studied issue in wall-bounded turbulence is the scaling of turbulent

fluctuations with the Reynolds number. Perfect inner scaling would yield

insensitivity of the inner scaled statistics from the Reynolds number [90]. However

many studies show that velocity fluctuations in channel and boundary layer increase

with the Reynolds number [11, 54, 60, 74, 79, 84, 87]. This effect has been attributed

to the increasing importance of inner/outer layer interaction of the wall parallel

motions [4, 85]. Figure 3.47 shows the streamwise velocity variances in wall units for

square duct D02A-A1, D02B-A1 and incompressible channel flow from [11]. The

duct flow data seem to exhibit inverse trend in the growth of the velocity variance

peak with Reynolds number and in particular we observe a lower peak for case D02A-

A1. The reason of this interesting result may be found in a different mechanism of

inner/outer layer interactions, associated with spanwise motions in channel and duct

flow. A possible explanation is given in the next Section, where secondary motions
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are analyzed in more detail. We also note that the classical Reynolds number trend

is recovered towards the wall, starting from z/(hA) (Fig. 3.47c).
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Figure 3.47: Streamwise velocity variance in local wall units at z/(hA) = 1(a),
z/(hA) = 0.8 (b), z/(hA) = 0.6 (c), z/(hA) = 0.4 (d), z/(hA) = 0.2(e) from
the wall, for cases D02B-A1 (black solid), D02A-A1 (gradients). Incompressible
channel flow simulations at Reτ = 1000 and Reτ = 140 are also reported (dotted
lines) from the database by Bernardini et al. [11].

The velocity variances in y and z direction are reported in Figs. 3.48-3.49. Unlike

the streamwise velocity variance, the Reynolds stresses τ22 and τ33 show trends

similar to channel flow. Variances at the duct centerline are close to those found in
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channels, with higher peak values (Figs. 3.48-3.49). We find evidence (Fig. 3.49a) of

a logarithmic scale of the spanwise Reynolds stresses, according the attached eddy

hypothesis [140],

w
′2/uτ ≈ B3 − A3 log (y/h), (3.39)

with constants B3 = 0.8 and A3 = 0.5, as found in incompressible channel flow at

Reτ ≈ 2000 [60].
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Figure 3.48: Velocity variance in direction y in local wall units at z/(hA) = 1(a),
z/(hA) = 0.8 (b), z/(hA) = 0.6 (c), z/(hA) = 0.4 (d), z/(hA) = 0.2(e) from
the wall, for cases D02B-A1 (black solid), D02A-A1 (gradients). Incompressible
channel flow simulations at Reτ = 1000 and Reτ = 140 are also reported (dottes
lines) from the database by Bernardini et al. [11].
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Figure 3.49: Velocity variance in direction z in local wall units at z/(hA) = 1(a),
z/(hA) = 0.8 (b), z/(hA) = 0.6 (c), z/(hA) = 0.4 (d), z/(hA) = 0.2(e) from
the wall, for cases D02B-A1 (black solid), D02A-A1 (gradients). Incompressible
channel flow simulations at Reτ = 1000 and Reτ = 140 are also reported (dottes
lines) from the database by Bernardini et al. [11]. Thick gray line in panel (a) refers
to Eqn. (3.39), with B3 = 0.8, A3 = 0.5.

A close look to the cross-stream velocity components, Figs. 3.50-3.51, reveals

large similarities of v and w between cases D02A-A1 and D02B-A1. As noticed in

Section 3.3.2, concerning the effect of the Mach number, it seems that cross-stream

velocity components are barely affected by the Reynolds number, for given aspect

ratio.
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Figure 3.50: Mean velocity components in the cross-stream plane, v/ue (a-c-e)
and w/ue (b-d-f). ue is the centerline streamwise velocity. Profiles are taken at
z/(hA) = 1 (a-b), z/(hA) = 0.8 (c-d) and z/(hA) = 0.6 (e-f) from the wall. Case
D02B-A1 (black solid), D02A-A1 (gradients).
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Figure 3.51: Mean velocity components in the cross-stream plane, v/ue (a-c) and
w/ue (b-d). ue is the centerline streamwise velocity. Profiles are taken at z/(hA) =
0.4 (a-b), z/(hA) = 0.2 (c-d) from the wall. Case D02B-A1 (black solid), D02A-
A1 (gradients).

3.4 Secondary flows

As introduced in Section 1.3, rectangular duct flow is characterized by Prandtl

secondary motions of second kind. In this Section we analyze the effect of Mach

number, Reynolds number and aspect ratio on the mean secondary motions, by

scrutiny of the mean statistics in the cross-stream section. Figures 3.52-3.53 show

the mean velocity components averaged over the duct quadrants for all the flow

cases. It is evident that the averaging time of flow cases D02B-A1 (Figs. 3.52 d-e-f)

and D15-A4 (Figs. 3.52 h-i-l) is not sufficient to reach accurate convergence of the

flow statistics, especially of the cross-stream velocity components. The information

contained in the duct quadrant in Figs. 3.52-3.53 is clearly redundant, thus a good

way to compress information is to plot z direction in outer units and y direction in

wall units. Figure 3.54 shows the velocity variances with superposed mean velocity
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vectors in the cross-stream, reported as function of the inner length scale y/δv and

the outer length scale z/(hA), for cases at different Mach number D02A-A1, D15-

A1, D3-A1. For these cases the center of the secondary vortices occur at z(hA) ≈
0.5 and y/δv ≈ 12, and it is not affected by the Mach number. As we observed in

Section 3.1.2 it seems that Prantdl secondary motions of second kind are insensitive

to Mach number variation, at least in the range considered here. We further note

that the center of the secondary vortex in inner units approximately corresponds to

the distance at which maximum velocity fluctuations occur y/δv ≈ 15.
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Figure 3.52: Mean velocity components, normalized with the streamwise centerline
velocity u/uc(a-d), v/uc(b-e), w/uc(c-f) for flow cases D02A-A1 (a-b-c) and D02B-
A1 (e-f-g). 30 contours levels are shown in the range 0 ≤ u/uc ≤ 1, −0.015 ≤
v/uc ≤ 0.015, −0.015 ≤ w/uc ≤ 0.015. Vectors denote cross-stream velocity
components.
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Figure 3.53: Velocity components in outer units y/h and z/(hA), normalized with
the streamwise centerline velocity u/uc(a-d-h), v/vc(b-e-i), w/wc(c-f-l) for flow cases
D15-A1 (a-b-c), D15-A2 (d-e-f) and D15-A4 (d-e-f). 30 contours levels are shown
in the range 0 ≤ u/uc ≤ 1, −0.015 ≤ v/uc ≤ 0.015, −0.015 ≤ w/uc ≤ 0.015.
Vectors denote cross-stream velocity components.
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Figure 3.54: Velocity variances in global wall units, scaled according to TL. Vectors
denote cross-stream velocity components. z direction is reported in outer units
z/(hA), whereas y is in global wall units yT/δv. τ11/τw (a-d-g), τ22/τw (h-e-h),
τ33/τw (c-f-i), for cases D02A-A1 (a-b-c), D15-A1 (d-e-f), D3-A1 (g-h-i.)

Figure.3.55 shows the effect ofAon secondary motions for given Mach number,

flow cases D15-A1, D15-A2,D15-A4. As the Aincrease the secondary vortex

center moves towards the side wall and for A = 4 z/(hA) ≈ 0.2, whereas the

position in inner units does not change y/δv =≈ 12. Besides, increasing Aclearly

reduces the vortex strength.
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Figure 3.55: Velocity variances in global wall units, scaled according to TL. z
direction is reported in outer units z/(hA), whereas y is in global wall units yT/δv.
τ11/τw (a-d-g), τ22/τw (h-e-h), τ33/τw (c-f-i), for cases D15-A1 (a-b-c), D15-A2
(d-e-f), D15-A4 (g-h-i.)

The effect of the Reynolds number on secondary motions is studied through

Fig. 3.56, which shows velocity variances with superposed mean velocity vectors in

the cross-stream plane, for flow cases M02AA1 and M02AA. We note that the

center of the secondary vortex is at the same position in outer units, z/(hA) ≈ 0.5

for the two flow cases, meaning that the effect of the Reynolds number variation

on secondary motions is minor. On the contrary the position of the vortex in inner

units changes, from y/δv ≈ 12 to y/δv ≈ 110, maybe clarifying the reason for the odd

trend of the streamwise Reynolds number peak observed in Section 3.3.3. At low

Reynolds number in fact, the center of the secondary vortex occurs approximately

at the same position where τ11 reaches its maximum (y/δv ≈ 15), so that the higher
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streamwise fluctuations peak at low Reynolds number may be due to the contribution

of secondary motions.
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Figure 3.56: Velocity variances in global wall units. z direction is reported in outer
units z/(hA), whereas y is in global wall units y/δv. τ11/τw (a-d), τ22/τw (h-e),
τ33/τw (c-f), for cases D02A-A1 (a-b), D02B-A1 (d-e).
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Chapter 4

Conclusions

The aim of this work was to investigate Mach and Reynolds number effects in

compressible internal flows. The study has focused on physical and numerical issues

which emerges in the numerical solution of turbulent compressible wall-bounded

flows. DNS of compressible flows is more expensive than incompressible simulations,

mostly owing to the acoustic time step restriction, which is always exceedingly

restrictive at the wall. The need to overcome this difficulty led us to develop a novel

semi-implicit treatment for the acoustic waves in the compressible N-S equations.

This efficient semi-implicit algorithm has been used to perform DNS of internal

flows with increasing geometrical complexity, namely planar channel, circular pipe

and rectangular duct flow. The numerical solver has been used to perform DNS

spanning a large range of Reynolds and Mach number, in order to clarify some

basic issues which are not yet understood. We divide this concluding chapter into

two parts, which summarize the key aspects of the recently developed numerical

algorithm and the main physical findings.

4.1 Numerical issues

A novel semi-implicit algorithm for time-accurate solution of the compressible

Navier-Stokes equations has been developed in Section 2.1.2, which is capable to

operate efficiently all the way from low subsonic to supersonic flow conditions.

The main features of the algorithm are as follows: i) use of the entropy transport

equation instead of total energy conservation; ii) Beam-Warming-like linearization

of the partial convective flux associated with acoustic propagation; iii) energy-

consistent discretization of the convective derivatives in the explicit part of the
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time-advancement operator; iv) semi-implicit treatment of viscous fluxes based on

isolation of Laplacian terms; v) approximate factorization for implicit treatment of

multiple space directions; vi) third-order accurate Runge-Kutta time integration,

according to the algorithm proposed by Nikitin [100]. The main advantage of

the algorithm is that, unlike the classical Beam-Warming scheme, it avoids the

computationally expensive inversion of 5 × 5 block-banded matrices, but rather

inversion of standard banded matrices (tridiagonal matrices in the case of second-

order accurate space discretization) is sufficient. Specifically, a single banded matrix

inversion is needed for implicit treatment of the convective terms, whereas five matrix

inversions are needed if viscous terms are also handled implicitly. The cost overhead

with respect to standard explicit algorithms (see Tab. 2.1) is quite modest, ranging

from 20% to 30%, for each space direction to be handled implicitly. Modification

of existing compressible flow solvers to incorporate the present method is relatively

straightforward, as the explicit part of the algorithm is unchanged. The method

nominally allows unconditional stability for low-Mach-number flows. However,

flux linearization and approximate factorization reduce the stability margins, and

CFL number is of the order of 5-10 are achieved in practical computations, which

is probably less than achievable with iterative methods. However, compared to

compressible flow algorithms based on pre-conditioning, the present method avoids

use of inner time iterations, whose computational cost is difficult to estimate a-priori.

Another possible shortcoming of the method is the use of the entropy equation, which

is instrumental to achieve (approximate) separation of hydrodynamic from acoustic

effects. While use of the entropy equation yields improved numerical stability, it

also makes proper capturing of shock waves difficult, since the equations are not in

conservation form. We have found that this issue can be fixed by locally reverting to

a total energy formulation for the explicit time increment in the presence of shocks,

as identified through a shock sensor [113]. The resulting time increments are then

converted to the entropy increments, prior to application of the implicit operator.

Although the algorithm herein developed has in principle much wider range of

applications, the main focus of this work was on DNS of compressible wall-bounded

flows, which is notoriously plagued by severe time step restrictions inherited from the

wall-normal acoustic and viscous stability conditions. We have found that the wall-

normal acoustic time limitation can be effectively removed through semi-implicit

treatment. The same conclusion also applies to the viscous time step restriction,

although the most efficient way to alleviate it is placing the first grid point sufficiently

away from the wall y+ ≈ 0.5− 0.7, and using suitable staggering [91], with no effect
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of accuracy. The wall-parallel stability restrictions can also be suppressed through

semi-implicit treatment. However, accuracy considerations lead to the practical rule

(see Fig. 1.1) that the time step cannot be much larger than the one stemming

from the streamwise time limitation. Hence, we suggest that in low-subsonic flow

both the wall-normal and the spanwise convective terms are handled implicitly,

whereas the streamwise terms should be evaluated explicitly. The resulting saving

of computer time can be of the order of 85% with respect to a fully explicit solver

with identical accuracy. In high subsonic or supersonic flow, implicit treatment of

the wall-normal convective derivatives is sufficient, with typical savings of to order

of 50%, in line with theoretical estimates. We foresee that the present technique

can be fruitfully extended to numerical simulation of wall-bounded turbulent flows

with time-accurate models, such as LES or DES [132]. In that case, given the higher

aspect ratio of near-wall cells, higher gains are expected. Advantages with respect

to classical algorithms based on Beam-Warming linearization are also expected for

steady RANS applications. Indeed, although the present algorithm is in principle

only capable of suppressing the acoustic time step limitation, it is found to be

at least as stable as Beam-Warming in practical computations. As for cylindrical

coordinates, we showed that successful conservation of the discrete kinetic energy

can be achieved simply rewriting the equations in terms of the variables R = rρ

and P = rp, which allows the straightforward application of the scheme developed

by [112]. For cylindrical coordinates the use of the semi-implicit algorithm (ATI) is

mandatory in the azimuthal direction, which in principle destroy the conservation

of the kinetic energy. Nevertheless inviscid cases have shown that the solver retains

its low dissipative character also in the semi-implicit case.

4.2 Flow physics

We have presented built a novel DNS database for compressible channel, pipe and

rectangular duct flow, which includes flows at unprecedented Reynolds number, with

the aim to shed some additional light on the structure of turbulence. Importantly,

compressible channel data are directly compared with incompressible channel DNS

data at precisely matching Reynolds number which allows to perform a fair

comparison with incompressible data. In the case of pipe and duct flow, ad-hoc

incompressible datasets have not been developed, and we have mainly relied on

low data available in literature. As far as ‘compressibility transformations’ are

concerned, we find the classical van Driest scaling to be inaccurate in representing
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the full inner-layer velocity profile, especially in the presence of significant wall heat

flux. Later transformations, including Huang and Coleman [61] and Brun et al.

[21] yield some improvement, especially because they more faithfully reproduce

the correct behavior in the inner layer. It appears that a recent transformation

[141] well reproduces the behavior of the entire mean velocity profile, with the side

consequence that fair comparison of inner-scaled velocity profiles across the Mach

number range should be carried out at matching friction Reynolds number based

on yT as defined in Eqn. (3.8) + Tab. 3.3. Comparison with incompressible data

has shown that the TL transformation is equally accurate for channel, pipe and

duct flow. Notably, in the case of duct flow, the TL transformation for velocity is

reasonably accurate for the whole duct cross section, although the formal derivation

cannot be provided. Huang’s (and consequently TL) transformations well perform

for all the Reynolds stress components, with the partial exception of the peak of

the streamwise turbulent stress, which as seen in many previous studies [55, 158] is

higher than in the incompressible case. We believe that the study of a passive scalar

field may help to shed light on this long-standing issue. In particular, since pressure

does not appear in the passive scalar transport equation, the study of the passive

scalar statistics may help in clarifying the role of pressure in the failure of Huang’s

scaling, if any. It seems in fact that pressure is not the cause of the unsuccessful

transformation of the velocity variance peak, since the same failure appears for the

passive scalar variance.

The outer-scaled mean velocity profile is reasonably well represented by all

compressibility transformations, as density and viscosity variations are small. In

particular, it is found that a universal parabolic profile well represents a substantial

fraction of the wall layer, up to 50% at sufficiently high Reynolds number, which is

characterized by a single, universal constant.

Study of the mean velocity/temperature relation shows a classical quadratic

dependence, however with coefficients different than the classical Walz formula, and

which explicitly depend of the wall heat flux [165].

Finally, we have scrutinized the behavior of the length scales associated with the

streamwise velocity field, for which no consensus exists at present. Limiting ourselves

to the spanwise length scales in channel and pipe flow, for which no ambiguity in

the interpretation exists, we find that their dependence on wall distance, Reynolds

and Mach number is well synthesized in formulas (3.25)-(3.31), which is rooted in

crude mixing length arguments. The direct consequence is that, for fixed Reynolds

number and wall distance, the length scales of the typical eddies should not vary
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with the Mach number.

4.3 Future work

Some of the issues encountered in this work have not been analyzed in detail,

and they are the subject of ongoing and future work. The compressibility

transformations discussed in this work, together with the temperature velocity

relation may lay the basis for the development of explicit approximations for the

friction and heat flux coefficients in compressible internal flows, which are currently

lacking. In turns out that deriving a counterpart of van Driest II transformation

in the case of internal isothermal flows is not straightforward, in fact in the

generalized temperature/velocity relation derived by Zhang et al. [165], temperature

appears a function of the wall heat flux and the temperature at the channel center,

which are not known a priori. For this reason, the compressibility transformations

presented in this work are a valuable tool to understand and quantify compressibility

effects, but their engineering applicability remains limited. We have shown that

the compressibility transformation by Huang is accurate for all Reynolds stress

components except for the streamwise velocity variance, which exhibits a higher peak

value with respect incompressible data. Reasons for this remaining discrepancy may

constitute an interesting topic for future research. In particular, we believe that the

analysis of the budgets of the streamwise Reynolds stress may help to shed light on

this issue. The study of duct flow case has revealed that the effect of the secondary

flows is important also for high aspect ratios (e.g. A = 4), hence supersonic duct

flow simulations at higher aspect ratio are currently being carried out. The effect

of Reynolds number variation in duct flow is also an interesting topic and for that

purpose we are carrying out DNS at Mb = 0.2 in the range range Reτ = 150− 1000.

We have shown that for channel and pipe flow the velocity profile in the core region

can be well represented by a laminar-like profile (parabolic law in Eqn. 3.16), thus

we may expect that a similar law holds for duct flow.



140 CHAPTER 4. CONCLUSIONS



Chapter 5

Appendix

5.1 Non-uniform mesh spacing

In the case of wall bounded flow the mesh is usually uniform in the wall parallel

directions x and z but its necessarily clustered towards the walls. For this reason the

numerical space η, uniformly spaced, is mapped into the physical one y(η). Several

choices are possible for the stretching function, which can be found on Orlandi [102].

In the case of internal flows such as channel and duct the classical choice is

y(η) =
erf

(
β
(
η − 1

2

))

erf
(
β
2

) , (5.1)

where η = (j − 1)∆η for co-located walls and η = (j − 0.5)∆η for staggered walls,

with j = 1, . . . , Ny and ∆η = ly/Ny. β is the stretching parameter. The error

function in Eqn. (5.1) can be substituted by the hyperbolic tangent function, with

similar behavior.

Derivative of a generic quantity f in the wall normal direction are therefor taken

using the chain rule,

∂f

∂y
=

∂f

∂η

∂η

∂y
, (5.2)

and the metric term ∂η
∂y

is evaluated numerically with the same order of accuracy of
∂f
∂η
. A similar reasoning hold for second derivatives,

∂2f

∂y2
=

∂2f

∂η2

(
∂η

∂y

)2

+
∂f

∂η

∂η

∂y

∂2η

∂y2
. (5.3)
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5.2 Jacobians of Navier-Stokes equations

In this Section we report the full Jacobians of the Navier-Stokes Eqns. (2.4) in the

three coordinate direction, together with the acoustic ones.

Ax =
∂fx
∂w

=




0 1 0 0 0
T
ρ

(
γ − s

cv

)
− u2 2u 0 0 p

ρCv

−uv v u 0 0

−uw w 0 u 0

−us s 0 0 u




(5.4)

Ay =
∂fy
∂w

=




0 0 1 0 0

−uv v u 0 0
T
ρ

(
γ − s

cv

)
− v2 0 2v 0 p

ρCv

−vw 0 w v 0

−vs 0 s 0 v




. (5.5)

Az =
∂fz
∂w

=




0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0
T
ρ

(
γ − s

cv

)
− w2 0 0 2w p

ρCv

−ws 0 0 s w




. (5.6)

It is easy to obtain the acoustic Jacobians from the full ones (5.7)-(5.8)-(5.9)

Aa
x =

∂fax
∂w

=




0 1 0 0 0
p
ρ

(
γ − s

cv

)
0 0 0 p

ρCv

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




(5.7)

Aa
y =

∂fay
∂w

=




0 0 1 0 0

0 0 0 0 0
p
ρ

(
γ − s

cv

)
0 0 0 p

ρCv

0 0 0 0 0

0 0 0 0 0




. (5.8)
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Aa
z =

∂faz
∂w

=




0 0 0 1 0

0 0 0 0 0

0 0 0 0 0
p
ρ

(
γ − s

cv

)
0 0 0 p

ρCv

0 0 0 0 0




. (5.9)

5.3 Viscous fluxes in cylindrical coordinates

In this Section the viscous fluxes in cylindrical coordinates in Eqn. (2.41) are

expanded into Laplacians.

∂f vx
∂x

=




0

Vxx

Vxr

Vxθ

Vxq



,
1

r

∂rf vr
∂r

=




0

Vrx

Vrr

Vrθ

Vrq




1

r

∂f vθ
∂θ

=




0

Vθx

Vθr

Vθθ

Vθq



, (5.10)

with,

Vxx =
∂µ

∂x
σxx + µ

∂2ux

∂x2
(5.11a)

Vxr =
∂µ

∂x
σxr + µ

∂2ur

∂x2
(5.11b)

Vxθ =
∂µ

∂x
σxθ + µ

∂2uθ

∂x2
(5.11c)

Vxq =
1

T

[
µ

(
σxx

∂ux

∂x
+ σxr

∂ux

∂y
+ σxθ

1

r

∂ux

∂θ

)
+

γ

(γ − 1)Pr

(
∂µ

∂x

∂T

∂x
+ µ

∂2T

∂x2

)] (5.11d)
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Vrx =
∂µ

∂r
σxr + µ

∂2ux

∂r2
+

τxr
r

(5.12a)

Vrr =
∂µ

∂r
− σθθ + µ

∂2ur

∂r2
+

τrr
r

(5.12b)

Vrθ =
∂µ

∂r
σrθ + µ

∂2uθ

∂r2
+

τrθ
r

(5.12c)

Vθq =
1

T

[
µ

(
σrx

∂vx
∂x

+ σrr
∂vr
∂r

+ σrθ
1

r

∂vθ
∂θ

)
+

γ

(γ − 1)Pr

(
∂µ

∂r

∂T

∂r
+ µ

(
∂2T

∂r2
+

1

r

∂T

∂r

))] (5.12d)

Vθx =
1

r

∂µ

∂θ
σxθ + µ

1

r2
∂2uθ

∂θ2
(5.13a)

Vθr =
1

r

∂µ

∂θ
σrθ + µ

1

r2
∂2ur

∂θ2
− 1

r2
∂uθ

∂θ
(5.13b)

Vθθ =
1

r

∂µ

∂θ
σθθ + µ

1

r2
∂2uθ

∂θ2
+

1

r2
∂ur

∂θ
(5.13c)

Vθq =
1

T

[
µ

(
σθx

∂uθ

∂x
+ σθr

∂uθ

∂r
+ σθθ

1

r

∂wθ

∂θ

)
+

γ

(γ − 1)Pr

(
1

r

∂µ

∂θ

1

r

∂T

∂θ
+ µ

1

r2
∂2T

∂θ2

)] (5.13d)

Note that only the derivative of the velocity gradient tensor is considered, while the

other contributions are neglected.

5.4 Equations for laminar internal flows

We report the equation for laminar compressible internal flows. In the compressible

case, no analytical solution to the equations can be found, nevertheless the

system constitute a set of ordinary differential equations that can be easily solved

numerically, with the appropriate boundary conditions. IN the incompressible limit

the problem is known as Poiseuille flow and it reduces to solution of classic Poisson

equation.
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5.4.1 Planar channel

The compressible equations for the laminar flow in a planar straight channel are,

d

d y

(
µ
d u

d y

)
+Π = 0 momentum (5.14a)

1

T

d

d y

(
k
dT

d y

)
+

µ

T

d2 u

d y2
= 0 entropy (5.14b)

d

d y

(
k
dT

d y

)
+ u

d

d y

(
µ
du

d y

)
+ µ

d2 u

d y2
+Πu = 0 total energy, (5.14c)

where of course entropy and total energy equations are interchangeable. In the

incompressible limit analytical solution can be found for −h ≤ y ≤ h,

u(y) =
3

2
ub

(
1− y2

h2

)
(5.15)

where ub =
2
3
Πh2

2µ
.

5.4.2 Rectangular duct

In case of square duct with square section the analytical solution for −a ≤ y ≤
a,−b ≤ z ≤ b is [159],

u(y, z) =
12ub

πQ

∞∑

i=1

(−1)(i−1)/2

[
1− cosh(iπz/2a)

cosh(iπb/2a)

]
cos (iπy/2a)

i3
(5.16)

with,

Q = 1− 192a

π5b

∞∑

i=1

tanh (iπb/2a)

i5
, (5.17)

and ub =
4a2

3µ
ΠQ
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5.4.3 Circular pipe

The compressible equations for a compressible laminar circular pipe are,

1

r

d

d r

(
rµ

d u

d r

)
+Π = 0 momentum (5.18a)

1

rT

d

d r

(
rk

dT

d r

)
+

µ

rT

d2 u

d r2
= 0 entropy (5.18b)

1

r

d

d r

(
rk

dT

d r

)
+ u

1

r

d

d r

(
rµ

du

d r

)
+ µ

d2 u

d r2
+Πu = 0 total energy, (5.18c)

where entropy and total energy equations are interchangeable. In the incompressible

limit analytical solution can be found, and the resulting velocity profile for 0 ≤ r ≤ R

is,

u(r) = 2ub

(
1− r2

R2

)
(5.19)

where ub =
1
2
ΠR2

4µ
.
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[98] V. Moureau, C. Bérat, and H. Pitsch. An efficient semi-implicit compressible

solver for large-eddy simulations. J. Comput. Phys., 226(2):1256–1270, 2007.

[99] S. Nagarajan, S.K. Lele, and J.H. Ferziger. A robust high-order compact

method for large eddy simulation. J. Comput. Phys., 191(2):392–419, 2003.

[100] N. Nikitin. Third-order-accurate semi-implicit Runge-Kutta scheme for

incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fl., 51(2):221–

233, 2006.

[101] N. Nikitin. Finite-difference method for incompressible Navier-Stokes

equations in arbitrary orthogonal curvilinear coordinates. J. Comput. Phys.,

217(2):759–781, 2006.

[102] P. Orlandi. Fluid flow phenomena: a numerical toolkit, volume 55. Springer

Science & Business Media, 2012.



156 BIBLIOGRAPHY

[103] P. Orlandi and M. Fatica. Direct simulations of turbulent flow in a pipe

rotating about its axis. J. Fluid Mech., 343:43–72, 1997.

[104] P. De Palma, M.D. De Tullio, G. Pascazio, and M. Napolitano. An immersed-

boundary method for compressible viscous flows. Computers & fluids, 35(7):

693–702, 2006.

[105] S.A. Pandya, S. Venkateswaran, and T.H. Pulliam. Implementation of

preconditioned dual-time procedures in overflow. AIAA paper, 72:2003, 2003.

[106] A. Patel, J.W.R. Peeters, B.J. Boersma, and R. Pecnik. Semi-local scaling

and turbulence modulation in variable property turbulent channel flows. Phys.

Fluids (1994-present), 27(9):095101, 2015.

[107] A. Patel, B.J. Boersma, and R. Pecnik. The influence of near-wall density

and viscosity gradients on turbulence in channel flows. arXiv preprint

arXiv:1607.04015, 2016.

[108] A.E. Perry and I. Marusic. A wall-wake model for the turbulence structure of

boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid

Mech., 298:361, 1995.

[109] C.D. Pierce. Progress-variable approach for large-eddy simulation of turbulent

combustion. PhD thesis, Citeseer, 2001.

[110] A. Pinelli, M. Uhlmann, A. Sekimoto, and G. Kawahara. Reynolds number

dependence of mean flow structure in square duct turbulence. J. Fluid Mech.,

644:107–122, 2010.

[111] S. Pirozzoli. Generalized conservative approximations of split convective

derivative operators. J. Comput. Phys., 229(19):7180–7190, 2010.

[112] S. Pirozzoli. Stabilized non-dissipative approximations of Euler equations

in generalized curvilinear coordinates. J. Comput. Phys., 230(8):2997–3014,

2011.

[113] S. Pirozzoli. Numerical methods for high-speed flows. Annu. Rev. Fluid Mech.,

43:163–194, 2011.

[114] S. Pirozzoli. On the size of the energy-containing eddies in the outer turbulent

wall layer. J. Fluid Mech., 702:521–532, 2012.



BIBLIOGRAPHY 157

[115] S. Pirozzoli. Revisiting the mixing-length hypothesis in the outer part of

turbulent wall layers: mean flow and wall friction. J. Fluid Mech., 745:378–

397, 2014.

[116] S. Pirozzoli and M. Bernardini. Turbulence in supersonic boundary layers at

moderate Reynolds number. J. Fluid Mech., 688:120–168, 2011.

[117] S. Pirozzoli, F. Grasso, and T.B. Gatski. Direct numerical simulation and

analysis of a spatially evolving supersonic turbulent boundary layer at M=

2.25. Phys. Fluids, 16:530–545, 2004.

[118] S. Pirozzoli, M. Bernardini, and P. Orlandi. Passive scalars in turbulent

channel flow at high Reynolds number. J. Fluid Mech., 788:614–639, 2016.

[119] Sergio Pirozzoli. On the Size of the Eddies in the Outer Turbulent Wall Layer:

Evidence from Velocity Spectra. In Progress in Wall Turbulence 2, pages 3–15.

Springer, 2016.

[120] T.J. Poinsot, A.C. Trouve, D.P. Veynante, S.M. Candel, and E.J. Esposito.

Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech.,

177:265–292, 1987.

[121] T.H. Pulliam. Solution methods in computational fluid dynamics, 1986.

[122] T.H. Pulliam and D.S Chaussee. A diagonal form of an implicit approximate-

factorization algorithm. J. Comput. Phys., 39(2):347–363, 1981.

[123] M.D. Salas and A. Iollo. Entropy jump across an inviscid shock wave. Theor.

Comp. Fluid Dyn., 8(5):365–375, 1996.

[124] R.D. Sandberg. An axis treatment for flow equations in cylindrical coordinates

based on parity conditions. Computers & Fluids, 49(1):166–172, 2011.

[125] R.D. Sandberg, N.D. Sandham, and V. Suponitsky. Dns of compressible pipe

flow exiting into a coflow. Int. J. Heat Fluid Flow, 35:33–44, 2012.

[126] V.A. Sandborn. A review of turbulence measurements in compressible flow.

1974.
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