
LTLf and LDLf Synthesis Under Partial Observability

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Moshe Y. Vardi
Rice University,

Houston, TX, USA
vardi@cs.rice.edu

Abstract
In this paper, we study synthesis under partial
observability for logical specifications over finite
traces expressed in LTLf /LDLf . This form of syn-
thesis can be seen as a generalization of plan-
ning under partial observability in nondeterminis-
tic domains, which is known to be 2EXPTIME-
complete. We start by showing that the usual
“belief-state construction” used in planning un-
der partial observability works also for general
LTLf /LDLf synthesis, though with a jump in com-
putational complexity from 2EXPTIME to 3EXP-
TIME. Then we show that the belief-state construc-
tion can be avoided in favor of a direct automata
construction which exploits projection to hide un-
observable propositions. This allow us to prove that
the problem remains 2EXPTIME-complete. The
new synthesis technique proposed is effective and
readily implementable.

1 Introduction
LTLf , linear temporal logic on finite traces, has been ex-
tensively used in AI [Bacchus and Kabanza, 2000; Gerevini
et al., 2009; De Giacomo and Vardi, 2013], as well as
in other areas of CS such as in business process mod-
eling [Pesic and van der Aalst, 2006; Sun et al., 2012;
De Giacomo et al., 2014]. In [De Giacomo and Vardi,
2013], LTLf has been extended to LDLf , linear dynamic
logic over finite traces, which fully captures monadic second-
order logic on finite traces (vs. first-order logic captured
by LTLf). LDLf includes regular expressions in the tem-
poral operators, which can be used to express, e.g., proce-
dural constraints on executions. Interestingly, reasoning in
LTLf /LDLf can be done through manipulation of finite state
automata (on finite words). In [De Giacomo and Vardi, 2015]
LTLf /LDLf synthesis under full observability has been stud-
ied. This is a general form of adversarial synthesis, related
to the classical Church realizability problem [Church, 1963;
Vardi, 1996], that has been thoroughly investigated in the in-
finite setting, starting from [Pnueli and Rosner, 1989]. From
an AI perspective LTLf /LDLf synthesis is a generalized form
of conditional planning under full observability in nondeter-
ministic domains, where the agent controls the choice of ac-
tions, while the environment control their nondeterministic

effect (notice the devilish, or adversarial, nature of such non-
determinism) [Rintanen, 2004]. The worst case complexity of
LTLf /LDLf synthesis under full observability is 2EXPTIME-
complete [De Giacomo and Vardi, 2015], and it lowers to EX-
PTIME when we do not mix angelic nondeterminism in the
specification (analogous to the ability of guessing the right
path towards a final state of an NFA, which makes the speci-
fication more succinct) with the devilish nondeterminism due
to the adversarial choice. This is exactly what happens in
conditional planning under full observability, in which the
specification (the planning domain, initial state and reachabil-
ity goal) does not generate angelic nondeterminism, and the
only nondeterminism is the devilish one corresponding to the
adversarial choice by the environment of the effects of the ac-
tion selected by the agent. Indeed conditional planning under
full observability is EXPTIME-complete [Rintanen, 2004].

In this paper we study LTLf /LDLf synthesis under partial
observability, which in turn is a generalized form of con-
ditional planning under partial observability, known to be
2EXPTIME-complete [Rintanen, 2004]. In particular, we
consider propositions partitioned into two sets: the first under
the control of the agent and the second under the control of
the environment. The key point is that only some of the envi-
ronment variables are observable. The specification consists
of an LTLf /LDLf formula (typically expressed as a conjunc-
tion of a finite set of formulas), which expresses how envi-
ronment’s and agent’s propositions should jointly evolve over
time. The problem of interest is checking whether there ex-
ist strategies for the agent to set the controllable propositions
over time, depending only on the history of the observable
environment propositions, so that regardless of the values as-
sumed by the unobservable propositions, the LTLf /LDLf for-
mula is fulfilled. If such strategies exist, it is of interest to
compute one. To set the analogy with planning, consider ac-
tions (represented as propositions) as the agent’s controllable
propositions and fluents as the environment’s ones. Only
some fluents are observable. Then strategies above are gener-
alizations of conditional plans under partial observability.

Inspired by the analogy with planning, we first look into
the usual “belief-state construction” [Goldman and Boddy,
1996], which is (sometimes implicitly) at the base of most
results in planning under partial observability [Geffner and
Bonet, 2013; Bonet and Geffner, 2000; Hoffmann and Braf-
man, 2005; Bertoli et al., 2006; Bryce et al., 2006; Al-
bore et al., 2009; Maliah et al., 2014]. We show that also

for LTLf /LDLf synthesis such construction works. Unfor-
tunately, it yields a 3EXPTIME technique, which reduces
to 2EXPTIME only when the specification does not induce
forms of angelic nondeterminism, as in the case of condi-
tional planning under partial observability.

We then show that we can avoid the belief-state construc-
tion altogether in favor of a direct automata construction
based on projecting out the unobservable propositions and
complementation. This new technique gives us a 2EXPTIME
upper-bound for LTLf /LDLf synthesis under partial observ-
ability, which matches the 2EXPTIME-hardness of condi-
tional planning under partial observability [Rintanen, 2004].
Hence we get that, at least from the worst-case complexity
point of view, the generalization from conditional planning
to full LTLf /LDLf synthesis under partial observability is for
free. The new technique proposed is easily implementable
with standard automata operations, and works for a variety of
linear time specifications formalisms, ranging from explicit
DFA’s to arbitrary LTLf /LDLf formulas.

2 LTLf and LDLf

LTL on finite traces, or LTLf , has essentially the same syntax
as LTL on infinite traces [Pnueli, 1977], namely, given a set P
of propositional symbols, LTLf formulas ϕ are as follows:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2

where φ is a propositional formula over P , ◦ is the next op-
erator and U is the until operator.

We use the usual abbreviations such as ϕ1∨ϕ2
.
= ¬(¬ϕ1∧

¬ϕ2); eventually as ♦ϕ .
= true U ϕ; always as �ϕ .

= ¬♦¬ϕ;
and •ϕ .

= ¬◦¬ϕ. (Note that on finite traces ¬◦ϕ 6≡ ◦¬ϕ.)
LTLf is as expressive as FO (first order logic) over finite

traces and star-free regular expressions, so strictly less ex-
pressive than regular expressions, which in turn are as expres-
sive as MSO (monadic second order logic) over finite traces.
On the other hand, regular expressions are not convenient for
expressing temporal specifications, since, for example, they
miss direct constructs for negation and for conjunction.

For this reason [De Giacomo and Vardi, 2013] introduced1

LDLf (linear dynamic logic on finite traces), which merges
LTLf with regular expressions through the syntax of the well-
known logic of programs PDL, propositional dynamic logic
[Fischer and Ladner, 1979; Harel et al., 2000], but adopting a
semantics based on finite traces. Formally, LDLf formulas ϕ
are built as follows:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ
ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

where φ is a propositional formula over P; ρ denotes path
expressions, which are regular expressions over propositional
formulas φ with the addition of the test construct ϕ? typical
of PDL. As in PDL, we use the abbreviation [ρ]ϕ

.
= ¬〈ρ〉¬ϕ.

Intuitively, 〈ρ〉ϕ states that, from the current step in the
trace, there exists an execution satisfying the regular expres-
sion ρ such that its last step satisfies ϕ, while [ρ]ϕ states that,
from the current step, all executions satisfying the regular ex-
pression ρ are such that their last step satisfies ϕ. Tests are

1An adaptation of LDL interpreted over infinite traces, in turn
introduced in [Vardi, 2011].

used to insert into the execution path checks for satisfaction
of additional LDLf formulas.

LDLf is indeed as expressive as MSO over finite words, and
easily captures LTLf by seeing next and until as abbrevia-
tions: ◦ϕ .

= 〈true〉ϕ and ϕ1 U ϕ2
.
= 〈(ϕ1?; true)∗〉ϕ2.

The semantics of LDLf is given in terms of finite traces,
i.e., finite words, denoting a finite, nonempty, sequence π of
consecutive steps over the alphabet 2P . We use the notation
length(π) and π(i), and in addition we denote by π(i, j) the
segment of the trace π starting at the i-th step and ending at
the j-th step. If j > length(π), we get the segment from the
i-th step to the end. The satisfaction relation is defined by
simultaneous induction on formulas and path expressions as
follows: given a finite trace π, an LDLf formula ϕ is true at a
step i, with 1 ≤ i ≤ length(π), in symbols π, i |= ϕ, if:
• π, i |= φ iff π(i) |= φ (φ propositional);
• π, i |= ¬ϕ iff π, i 6|= ϕ;
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
• π, i |= 〈ρ〉ϕ iff there exists i ≤ j ≤ length(π) such

that π(i, j) ∈ L(ρ) and π, j |= ϕ;
where the relation π(i, j) ∈ L(ρ) is as follows:
• π(i, j) ∈ L(φ) if j=i+1, j ≤ length(π), and π, i |= φ

(φ propositional);
• π(i, j) ∈ L(ϕ?) if j = i and π, i |= ϕ;
• π(i, j) ∈ L(ρ1 + ρ2) if π(i, j) ∈ L(ρ1) or π(i, j) ∈
L(ρ2);
• π(i, j) ∈ L(ρ1; ρ2) if there exists k, with i ≤ k ≤ j,

such that π(i, k) ∈ L(ρ1) and π(k, j) ∈ L(ρ2);
• π(i, j) ∈ L(ρ∗) if j = i or there exists k, with i ≤ k ≤
j, such that π(i, k) ∈ L(ρ) and π(k, j) ∈ L(ρ∗).

We say that a trace π satisfies an LTLf /LDLf formula ϕ,
written π |= ϕ, if π, 1 |= ϕ. Also, sometimes we denote by
L(ϕ) the set of traces that satisfy ϕ: L(ϕ) = {π | π |= ϕ}.

We can associate with LDLf formulas ϕ a (possibly expo-
nentially larger) NFA Aϕ that accepts exactly the traces that
satisfy ϕ. To do so (i) we translate ϕ into alternating automa-
ton on words (AFW) (whose number of states is polynomial
in the size of ϕ) that accepts exactly the traces that satisfy
ϕ, and then (ii) transform the AFW into a NFA [De Giacomo
and Vardi, 2013] (whose number of states is exponential in
that of the AFW, and hence in the size of ϕ —this exponential
blowup is unavoidable). These two steps can be combined
into a simple direct algorithm for computing the NFA corre-
sponding to an LDLf formula [De Giacomo and Vardi, 2015].

LTLf /LDLf synthesis under full observability. Synthe-
sis under full observability [Vardi, 1996; Pnueli and Rosner,
1989] has been studied for LTLf /LDLf in [De Giacomo and
Vardi, 2015]. Essentially it is as follows. We partition the
set P of propositions into two disjoint sets X and Y . We
assume to have no control on the truth value of the propo-
sitions in X , while we can control those in Y . The prob-
lem of interest is: can we control the values of Y in such a
way that for all possible values of X the LTLf /LDLf speci-
fication ϕ remains true? More precisely, traces now assume
the form π = (X0, Y0)(X1, Y1)(X2, Y2) · · · (Xn , Yn), where
(Xi, Yi) is the propositional interpretation at the i-th posi-
tion in π, now partitioned in the propositional interpretation

Xi for X and Yi for Y . Let us denote by πX |i the trace π
projected only on X and truncated at the i-th element (in-
cluded), i.e., πX |i = X0X1 · · ·Xi. Synthesis consists in
computing a function f : (2X)∗ → 2Y such that for all π
with Yi = f(πX |i), we have that π satisfies the formula ϕ.
Realizability is the corresponding recognition problem, i.e.,
checking that such a function exists. As usual we will blur
the distinction between the two and talk about complexity of
synthesis, to intend the complexity of the associated recogni-
tion problem, i.e., realizability.

Observe that in synthesis we have no way of constraining
the value assumed by the propositions in X : the function we
are looking for only acts on propositions in Y .

DFA games. The basic technique introduced in [De Giacomo
and Vardi, 2015] to solve synthesis under full observability is
to reduce the LTLf /LDLf specification to a DFA automata and
then play over it the so called DFA game. DFA games are
games between the agent and the environment. A round of
the game consists of both the agent and the environment set-
ting the values of the propositions they control. A (complete)
play is a word in (2X × 2Y)∗ describing how the agent and
environment set their propositions at each round till the game
stops. The specification of the game is given by a DFA G of
the form G = (2X × 2Y , S, s0, δ, F), where:
• 2X × 2Y is the alphabet of the game;
• S are the states of the game;
• s0 is the initial state of the game;
• δ : S × 2X × 2Y → S is the transition function of

the game: given the current state s and a choice of
propositions X and Y for the enviroment and the agent,
δ(s, (X,Y)) = s′ is the resulting state of the game;
• F are the final states of the game, where the game can

be considered terminated.
A play is winning for the agent if such a play leads from the
initial to a final state. A strategy for the agent is a function
f : (2X)∗ → 2Y that, given a history of choices from the en-
vironment, decides which propositions Y to set to true/false
next. A winning strategy is a strategy f : (2X)∗ → 2Y such
that for all π with Yi = f(πX |i) we have that π leads to a final
state of G. Notice that in the DFA game, in spite of the name,
we do have devilish nondeterminism, corresponding to un-
controllability of the propositionsX . What has been removed
is the angelic nondeterminism coming from the LTLf /LDLf

specification, which can be translated (in exponential time)
into an NFA, which, if not already a DFA, requires a further
determination (another exponential step).

To better grasp the game from a planning point of view,
consider X to be fluents and Y to be actions. Then the DFA
game is akin to an explicit state representation of a condi-
tional planning under full observability problem, with the fi-
nal states of the DFA game acting as the goal.

To actually compute the strategy, we start by defining the
controllable preimage PreC (E) of a set E of states of G as
the set of states s such that there exists a choice of values for
propositions Y such that for all choices of values for proposi-
tions X , game G progresses to states in E . Formally:

PreC (E) = {s ∈ S | exists Y ∈ 2Y such that
for all X ∈ 2X we have δ(s, (X,Y)) ∈ E}

Then, we define the set Win(G) of winning states of the DFA
game G, i.e., the set formed by the states from which the agent
can win G, as a least-fixpoint, making use of approximates
Wini(G) denoting all states where the controller wins in at
most i steps:

• Win0(G) = F (the final states of G);
• Wini+1(G) = Wini(G) ∪ PreC (Wini(G)).

Then, Win(G) =
⋃

i Wini(G). Notice that computing
Win(G) requires linear time in the number of states in G.
Indeed, after at most a linear number of steps Wini+1(G) =
Wini(G) = Win(G). A DFA game G admits a winning strat-
egy iff s0 ∈Win(G).

Then, we define a strategy generator based on the win-
ning sets Wini(G). This is a nondeterministic transducer,
where nondeterminism is of the kind “don’t-care”: all nonde-
terministic choices are equally good. The strategy generator
TG = (2X × 2Y , S, s0, %, ω) is as follows:

• 2X × 2Y is the alphabet of the trasducer;
• S are the states of the trasducer;
• s0 is the initial state;
• % : S × 2X → 2S is the transition function such that

%(s,X) = {s′ | s′ = δ(s, (X,Y)) and Y ∈ ω(s)};

• ω : S → 2Y is the output function such that

ω(s) = {Y | if s ∈Wini+1(G)−Wini(G)
then ∀X.δ(s, (X,Y)) ∈Wini(G)}.

The transducer TG generates strategies in the following sense:
for every way of restricting ω(s) to return only one of its val-
ues (chosen arbitrarily), we get a strategy.

To obtain the DFA game given an LTLf /LDLf specifica-
tion we perform some preprocessing, to get from a compact
representation in logic to an explicit representation in terms
of game states, and to get rid of the angelic nondetermin-
ism. As a result, the complexity of LTLf /LDLf synthesis is
2EXPTIME-complete in general and EXPTIME-complete in
the case of LTLf /LDLf specifications that do not give rise to
angelic nondeterminism, as for conditional planning.

3 Synthesis Under Partial Observability
Now, we introduce synthesis for LTLf /LDLf specification un-
der partial observability. As before, we partition the set P of
propositions into two disjoint setsX and Y . As before, we as-
sume to have no control on the truth value of the propositions
inX , while we can control those in Y . In addition, we assume
that only a subset Obs of the uncontrollable propositions X
are actually observable.

The synthesis problem intuitively is: can we choose
suitably the values of Y on the basis of what ob-
served so far in such a way that for all possible val-
ues of X the LTLf /LDLf specification ϕ remains true?
More precisely, as before, traces have the form π =
(X0, Y0)(X1, Y1)(X2, Y2) · · · (Xn , Yn), where (Xi, Yi) is
the propositional interpretation at the i-th position in π,
partitioned in the propositional interpretation Xi for X

and Yi for Y . But now, given a propositional inter-
pretation Xi for X , we denote by obs(Xi) the projec-
tion of Xi on the propositions in Obs . Given a trace
π = (X0, Y0)(X1, Y1)(X2, Y2) · · · (Xn , Yn), we define
the corresponding observable trace ω as: obs(π) =
(obs(X1), Y1)(obs(X2), Y2) · · · (obs(Xn), Yn). Vice versa,
given an observable trace ω we define the set full(ω), de-
noting all traces giving rise to the same observable trace ω,
as: full(ω) = {π | obs(π) = ω}

As before, we denote by πX |i the trace π projected only on
X and truncated at the i-th element (included), i.e., πX |i =
X0X1 · · ·Xi. Similarly, we denote by πObs |i the observable
trace obs(π) projected only on Obs and truncated at the i-th
element. The synthesis problem under partial observability
consists in computing a partial function f : (2Obs)∗ → 2Y

such that for all π with Yi = f(πObs |i) (note that this implies
that it is defined), we have that π satisfies formula ϕ.

To solve the synthesis problem, we can try to proceed as in
the case of full observability. We can reduce our LTLf /LDLf

specification to a DFA A over the alphabet 2X × 2Y .
Over such DFA, however this time, we need to play the DFA

game under partial observability. A round of the game con-
sists of both the agent and the environment setting the values
of the propositions they control. A (complete) play is a word
in (2X × 2Y)∗ describing how the agent and the environment
set their propositions at each round till the game stops.

A play is winning for the agent if such a play leads from the
initial to a final state. A partial-observability-strategy for the
agent is a partial function fA : (2Obs)∗ → 2Y that, given
a history of choices from the environment, decides which
propositions Y to set to true/false next based only on the
observable history of the environment. A winning partial-
observability-strategy is a strategy fA : (2Obs)∗ → 2Y such
that for all π with Yi = fA(πObs |i) we have that π leads to
a final state of the DFA A. The synthesis problem consists of
computing a winning strategy.

We show below that one possible way to solve DFA games
under partial observability is to use the belief-state con-
struction typically used in conditional planning under partial
observability [Goldman and Boddy, 1996; Rintanen, 2004;
Bertoli et al., 2006].

4 Belief-States Construction
We define belief-states DFA game GObs

A , or simply G, asso-
ciated with a DFA game A = (2X × 2Y , S, s0, δ, F) as the
following DFA game: G = (2X × 2Y ,B, B0, ∂,F), where:

• 2X×2Y is the alphabet of the partial observability game;
• B = 2S are the states of the partial observability game,

which are called belief states, and correspond to sets of
the states of the original game [Goldman and Boddy,
1996];
• B0 = {s0} is the initial state of the partial observability

game, which corresponds to that of the original game;
• ∂ : B × 2X × 2Y → B is the transition function of the

game: given the current state B and a choice of proposi-
tions X and Y , respectively for the enviroment and the

agent, the transition function is defined as:

∂(B, (X,Y)) = {s′ | exists s,X ′ s.t. s ∈ B and
obs(X ′)=obs(X) and δ(s, (X ′, Y)) = s′}

• F = 2F are the final states of the game, where the game
can be considered terminated.

Observe that forX1 andX2 such that obs(X1)=obs(X2), we
have ∂(B, (X2, Y)) = ∂(B, (X1, Y)), for all B and Y . In
other words the partial observability game cannot distinguish
between assignments of the uncontrolled propositions that are
observationally equivalent.

A crucial observation in the finite trace setting is the fol-
lowing: a strategy reaches a final state if and only if it reaches
a final belief state. This observation has been first made in
the context of conditional planning under partial observabil-
ity: a plan reaches the goal iff it reaches a belief state where
the goal is satisfied, see Theorem 3.5 in [Bertoli et al., 2006].

Notice that G is a standard fully observable DFA game,
though in the belief state space.
Theorem 1. Let A be DFA game under partial observabil-
ity, and G the corresponding belief-state DFA game. Then A
admits a winning strategy iff G does.

Proof (sketch). If-Direction. Form the observation that
for X1 and X2 such that obs(X1) = obs(X2), we have
∂(B, (X2, Y)) = ∂(B, (X1, Y)), for all B and Y , It is im-
mediate to see that every strategy for G is also a partial-
observability-strategy for A. Indeed, fG(πX |i) = fG(π′X |i)
as long as πObs |i = π′Obs |i. Moreover if ∂(B0, π) ∈ F
then ∂(B0, π̂) ∈ F for every π̂ ∈ full(obs(π)) and hence
for δ(s0, π̂) ∈ F for every π̂ ∈ full(obs(π)).

Only-if-Direction. Suppose we have a strategy for fA :
(2Obs)∗ → 2Y for A that is winning, i.e., such that for every
π with Yi = fA(πObs |i) we have that π leads to a final state
of A. Then fG : (2X)∗ → 2Y for G defined as fG(πX |i) =
fA(πObs |i) is a winning strategy for G since it leads toF .

Hence we can concentrate on the belief-state DFA Game G,
which is a standard DFA game and use it to solve the corre-
sponding DFA game under partial observability.

The construction above requires an exponential blow-up
in the original number of states to get the belief-state DFA
game, which in turn can be solved polynomially. In fact it can
be shown that DFA games with partial information can solve
two-player reachability games which are indeed EXPTIME-
complete [Reif, 1984].2 Hence we get:
Theorem 2. Let A be DFA game under partial observabil-
ity. Then deciding whether A admits a winning strategy is
EXPTIME-complete.

LTLf /LDLf synthesis via belief-state construction. To do
synthesis in LTLf or LDLf , we translate an LTLf /LDLf spec-
ification ϕ into (an AFW and then into) an NFA Aϕ. This is
an exponential step. Then, we transform the resulting NFA
into a DFA Ad

ϕ, e.g., using the standard determinization al-
gorithm based on the subset construction [Rabin and Scott,
1959]. This costs us another exponential. Then we build the

2This paper introduces a construction analogous to the belief-
state construction used in planning, see also [Raskin et al., 2007].

belief-state DFA game GObs
ϕ corresponding to Ad

ϕ. This costs
us another exponential. At this point we solve the DFA game
GObs
ϕ by computing Win(GObs

ϕ) and the corresponding strat-
egy generator TGObs

ϕ
. This is a linear step.

Considering the cost of each of the steps above, we get the
following worst-case computational complexity upper bound.
Theorem 3. Synthesis under partial observability in
LTLf /LDLf can be solved in 3EXPTIME.

A 2EXPTIME lower-bound comes from the fact that
LTLf /LDLf synthesis under full observability is 2EXPTIME-
complete [De Giacomo and Vardi, 2015], but also by con-
sidering that conditional planning under partial observability,
which is indeed 2EXPTIME-complete [Rintanen, 2004], is a
special case.
Theorem 4. Synthesis under partial observability in
LTLf /LDLf is 2EXPTIME-hard.

It turns out that we can close the above gap between mem-
bership and hardness, however we have to give up the belief-
state construction. This is what we do next.

5 Projection-based Construction
We now devise a technique to solve synthesis under partial
observability which avoids the belief-state construction. In
fact, we study such a technique starting from a variety of
specifications for the join admissible traces of environment
and agent. Namely we consider specifications given as:
• DFA, which is a case of particular interest since condi-

tional planning problems under partial observability can
be seen as compactly (logarithmically) represented DFA
specifications (notice these allow one to model devilish
nondeterminism of nondeterministic planning domains);
• NFA, which, while possibly hard to imagine as an ac-

tual specification for a planning/synthesis problem, is of
interest from a technical point of view;
• AFW, which generalizes both a DFA and NFA and is

tightly related to LTLf /LDLf synthesis;
• LTLf /LDLf formula, which is the problem of interest in

this paper.
The various procedures above, along with complexity results,
are summarized in the table in Figure 1 (In the case of DFA we
consider also compact representation which essentially corre-
sponds to conditional planning under partial observability).

From DFA specification. We consider first the case in which
the specification is given directly as a DFA (over X and Y , not
directly over Obs and Y).

Let the DFA A be A = (2X × 2Y , S, s0, δ, F), where:

• 2X × 2Y is the alphabet of the DFA;
• S are the states of the DFA;
• s0 is the initial state of the DFA;
• δ : S × 2X × 2Y → S is the transition function of the

DFA: given the current state s and a choice of proposi-
tions X and Y , respectively for the enviroment and the
agent, δ(s, (X,Y)) = s′ is the resulting state of the DFA;
• F are the final states of the DFA.

Step 1: first complementation. Consider the complementA of
A. SinceA is a DFA we can obtain its complementA in linear
time by simply switching in A the final states with the non-
final ones: A = (2X × 2Y , S, s0, δ, F), where F = S − F .
The DFA A accepts all joint traces for enviroment and agent
that do not satisfy the specification A.
Step 2: projection. We project out the propositions that
are hidden, getting a new automaton Π(A) = (2Obs ×
2Y , S, s0, δΠ, F) where:

δΠ(s, (O, Y)) = {s′ | δ(s, (X,Y)) = s′ and obs(X)=O}

Notice that this automaton Π(A) accepts an observable trace
ω if there exists a full trace π ∈ full(ω) that is accepted by
A, i.e., a full trace π that violates the specification A. Notice
also that Π(A) is an NFA.
Step 3: second complementation. Consider the complement
Π(A) of Π(A). This is an exponentially larger DFA, obtained
through the usual subset construction [Hopcroft et al., 2001],
which accepts a trace ω if all full traces in full(ω) satisfy the
specification A.

The DFA Π(A) represents the specification for a synthesis
problem with full observability whose solutions are strategies
(depending only on the observable history) which are solu-
tions for the original synthesis problem under partial observ-
ability. To solve it we consider Π(A) as a DFA game under
full observability and compute its winning strategies (which
require a polynomial fixpoint computation). Thus we get an
EXPTIME procedure for synthesis under partial observability
from DFA specification.
Theorem 5. Synthesis under partial observability from a DFA
specification is EXPTIME-complete.
Proof (sketch). Membership is obtained by using the proce-
dure above. Hardness follows from EXPTIME-hardness of
DFA games under partial observability, see Theorem 2.

Note that the technique above, although it avoids the belief-
state construction is analogous to it at Step 3. Indeed, the tran-
sition function generated at Step 3 is the result of the subset
construction for determinization, which is based on the power
set of the original states as the belief-state construction is.

It is of particular interest to consider the case where the
DFA specification is represented compactly (i.e., logarithmi-
cally), as for example in conditional planning problems un-
der partial observability, where the planning domain and the
reachability goal are represented compactly, e.g., as logical
formulas [Rintanen, 2004]. Then the technique above be-
comes 2EXPTIME.
Theorem 6. Synthesis under partial observability from a DFA
specification given in a compact (logarithmic) representation
is 2EXPTIME-complete.
Proof (sketch). Membership is obtained by using the proce-
dure above. Hardness comes from 2EXPTIME-completeness
of conditional planning under partial observability.

From NFA specification. If we start from a specification
given as an NFA, the procedure above still applies, though
in this case the first complementation requires an exponential

DFA spec NFA spec AFW spec LTLf /LDLf spec

1. Complement DFA spec A,
getting DFA A (poly)

2. Project out unobservable
propositions from A, get-
ting NFA Π(A) (poly)

3. Complement NFA Π(A),
getting DFA Π(A) (exp)

4. Solve DFA game (poly)

1. Complement NFA spec A,
getting DFA A (exp)

2. Project out unobservable
propositions from A, get-
ting NFA Π(A) (poly)

3. Complement NFA Π(A),
getting DFA Π(A) (exp)

4. Solve DFA game (poly)

0. Complement AFW spec
Aafw , getting AFW Aafw

(poly)
1. Transform AFW Aafw into

NFA, getting NFA A (exp)
2. Project out unobservable

propositions from A, get-
ting NFA Π(A) (poly)

3. Complement NFA Π(A),
getting DFA Π(A) (exp)

4. Solve DFA game (poly)

0. Compute AFW A¬Φ for
¬Φ (poly)

1. Transform AFW A¬Φ into
NFA, getting NFA A (exp)

2. Project out unobservable
propositions from A, get-
ting NFA Π(A) (poly)

3. Complement NFA Π(A),
getting DFA Π(A) (exp)

4. Solve DFA game (poly)

EXPTIME-complete
(2EXPTIME-complete starting
from compact representations)

2EXPTIME 2EXPTIME-complete 2EXPTIME-complete

Figure 1: Summary of techniques and results for synthesis under partial observability

blow up, thus making the procedure 2EXPTIME. It remains
open whether the problem is indeed 2EXPTIME-hard. In-
deed, we conjecture it is.

Theorem 7. Synthesis under partial observability from an
NFA specification is in 2EXPTIME.

From AFW specification. If we start from a specification
given as AFW then the first complementation can be done in
polynomial time, but then we need to transform the resulting
AFW into an NFA for projection, and this costs an exponential.
So performing the rest of the steps above we get a 2EXPTIME
procedure, as for the case of NFA specification.

Theorem 8. Synthesis under partial observability from an
AFW specification is 2EXPTIME-complete.

Proof (sketch). Membership is obtained by using the pro-
cedure above. Hardness follows from that for LTLf /LDLf

specifications (Theorem 9), which can indeed be translated
polynomially into AFW.

From LTLf /LDLf specification. Finally, if we start from
specifications Φ given as an LTLf /LDLf formula (or as a finite
conjunctions of formulas), then complementation trivially re-
duces to negating the formula, getting ¬Φ, and the translation
of the formula into an NFA can be done in exponential time.
Then, as before we proceed by projection, complementation
and solving the resulting DFA game. The procedure in this
case is 2EXPTIME in the size of the specification formula
Φ. This is the same complexity of conditional planning under
partial information which is 2EXPTIME-complete already.

Theorem 9. Synthesis under partial observability from
LTLf /LDLf specification is 2EXPTIME-complete.

Proof (sketch). Membership is obtained by using the pro-
cedure above. Hardness follows from 2EXPTIME-hardness
of conditional planning under partial observability [Rintanen,
2004], which is a special case.

We observe that it is quite odd and interesting that for the
synthesis problem remains of the same complexity starting
from such different forms of specification, cf. Figure 1, al-
though for different reasons in each case.

6 Conclusion
We have studied LTLf /LDLf synthesis under partial observ-
ability, showing that the problem is 2EXPTIME-complete, as

for the cases of LTLf /LDLf synthesis under full observability
[De Giacomo and Vardi, 2015] and conditional planning un-
der partial observability [Rintanen, 2004]. Unlike in [Rinta-
nen, 2004], the classical belief-state construction, while ap-
plicable, does not give us a procedure that is optimal wrt
worst-case computational complexity. This non-optimality is
due to the need of, on one hand, removing angelic nonde-
terminism from the specification, leaving only the adversar-
ial nondeterminism, and on other hand, dealing with the lack
of knowledge coming from partial observability. The belief-
state construction handles these two aspects separately, re-
quiring an exponential blow up for each of them. This, com-
bined with the fact that logic allows for compact represen-
tations, gives us a 3EXPTIME procedure in the case of syn-
thesis from general LTLf /LDLf specification. The belief-state
construction gets back 2EXPTIME only when the LTLf /LDLf

specification does not give rise to angelic nondeterminism,
as in the notable case of conditional planning (under partial
observability). The new technique based on projection and
complementation proposed here is able to combine the elimi-
nation of angelic nondeterminism with the elimination of par-
tial observation, thus getting to 2EXPTIME.

Interestingly also in the case of infinite traces LTL synthesis
under partial observability is 2EXPTIME-complete [Vardi,
1995; Kupferman and Vardi, 1997]. Nevertheless, the tech-
niques available in this case, are not easily implementable,
since they involve determinization of ω-automata that still re-
sists good algorithms [Fogarty et al., 2013]. The construction
proposed here, instead, although as expensive in the worst-
case, includes only steps for which good algorithms are avail-
able, so effective tools can indeed be developed.

One final observation is that in the end we reduce our prob-
lem to solving DFA games, which are based on reachabil-
ity. This is an area where the research in planning excels
[Geffner and Bonet, 2013]. It would be interesting to under-
stand to what extent planning technologies can actually be
pushed to solve efficiently these forms of synthesis, see [Tor-
res and Baier, 2015] for some recent results.

Acknowledgements. This research was partially supported by the
Sapienza project “Immersive Cognitive Environments”, by NSF
grants CCF-1319459 and IIS-1527668, by NSF Expeditions in
Computing project “ExCAPE: Expeditions in Computer Augmented
Program Engineering”, and by BSF grant 9800096. Part of this work
was done while the second author was visiting the Israeli Institute for
Advanced Studies.

References
[Albore et al., 2009] Alexandre Albore, Héctor Palacios, and

Hector Geffner. A translation-based approach to contin-
gent planning. In Proc. of IJCAI, 2009.

[Bacchus and Kabanza, 2000] Fahiem Bacchus and Frodu-
ald Kabanza. Using temporal logics to express search con-
trol knowledge for planning. Artificial Intelligence, 116(1-
2), 2000.

[Bertoli et al., 2006] Piergiorgio Bertoli, Alessandro
Cimatti, Marco Roveri, and Paolo Traverso. Strong plan-
ning under partial observability. Artificial Intelligence,
170(45):337 – 384, 2006.

[Bonet and Geffner, 2000] Blai Bonet and Hector Geffner.
Planning with incomplete information as heuristic search
in belief space. In Proc. of AIPS, pages 52–61, 2000.

[Bryce et al., 2006] Daniel Bryce, Subbarao Kambhampati,
and David E. Smith. Planning graph heuristics for belief
space search. J. Artif. Intell. Res. (JAIR), 26, 2006.

[Church, 1963] Alonzo Church. Logic, arithmetics, and au-
tomata. In Proc. International Congress of Mathemati-
cians, 1962. institut Mittag-Leffler, 1963.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In Proc. of IJCAI, 2013.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Y. Vardi. Synthesis for LTL and LDL on finite
traces. In Proc. of IJCAI, 2015.

[De Giacomo et al., 2014] Giuseppe De Giacomo, Ric-
cardo De Masellis, Marco Grasso, Fabrizio Maria Maggi,
and Marco Montali. Monitoring business metaconstraints
based on LTL and LDL for finite traces. In Proc. of BPM,
2014.

[Fischer and Ladner, 1979] Michael J. Fischer and
Richard E. Ladner. Propositional dynamic logic of
regular programs. Journal of Computer and System
Sciences, 18, 1979.

[Fogarty et al., 2013] Seth Fogarty, Orna Kupferman,
Moshe Y. Vardi, and Thomas Wilke. Profile trees for
Büchi word automata, with application to determinization.
In Proc. of GandALF, 2013.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet. A
Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool Publishers, 2013.

[Gerevini et al., 2009] Alfonso Gerevini, Patrik Haslum,
Derek Long, Alessandro Saetti, and Yannis Dimopoulos.
Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the
planners. Artificial Intelligence, 173(5-6), 2009.

[Goldman and Boddy, 1996] Robert P. Goldman and
Mark S. Boddy. Expressive planning and explicit
knowledge. In Proc. of AIPS, 1996.

[Harel et al., 2000] David Harel, Dexter Kozen, and Jerzy
Tiuryn. Dynamic Logic. MIT Press, 2000.

[Hoffmann and Brafman, 2005] Jörg Hoffmann and Ronen I.
Brafman. Contingent planning via heuristic forward
search witn implicit belief states. In Proc. of ICAPS, 2005.

[Hopcroft et al., 2001] John E Hopcroft, Rajeev Motwani,
and Jeffrey D Ullman. Introduction to Automata The-
ory, Languages, and Computation (2nd Edition). Addison
Wesley, 2 edition, July 2001.

[Kupferman and Vardi, 1997] Orna Kupferman and Moshe
Vardi. Synthesis with Incomplete Informatio. Proc. ICTL,
1997.

[Maliah et al., 2014] Shlomi Maliah, Ronen I. Brafman,
Erez Karpas, and Guy Shani. Partially observable online
contingent planning using landmark heuristics. In Proc. of
ICAPS, 2014.

[Pesic and van der Aalst, 2006] Maja Pesic and Wil M. P.
van der Aalst. A declarative approach for flexible busi-
ness processes management. In Proc. of the BPM 2006
Workshops, volume 4103 of LNCS. Springer, 2006.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In Proc. of POPL,
1989.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In Proc. of FOCS, 1977.

[Rabin and Scott, 1959] Michael O. Rabin and Dana Scott.
Finite automata and their decision problems. IBM J. Res.
Dev., 3(2), April 1959.

[Raskin et al., 2007] Jean-François Raskin, Krishnendu
Chatterjee, Laurent Doyen, and Thomas A. Henzinger.
Algorithms for omega-regular games with imperfect
information. Logical Methods in Computer Science, 3(3),
2007.

[Reif, 1984] John H. Reif. The complexity of two-player
games of incomplete information. Journal of Computer
and System Sciences, 29(2):274 – 301, 1984.

[Rintanen, 2004] Jussi Rintanen. Complexity of planning
with partial observability. In Proc. of ICAPS, 2004.

[Sun et al., 2012] Yutian Sun, Wei Xu, and Jianwen Su.
Declarative choreographies for artifacts. In Proc. of IC-
SOC, 2012.

[Torres and Baier, 2015] Jorge Torres and Jorge A. Baier.
Polynomial-time reformulations of LTL temporally ex-
tended goals into final-state goals. In Proc. IJCAI, 2015.

[Vardi, 1995] Moshe Y. Vardi. An automata-theoretic ap-
proach to fair realizability and synthesis. In Proc. of CAV,
1995.

[Vardi, 1996] Moshe Y. Vardi. An automata-theoretic ap-
proach to linear temporal logic. In Logics for Concur-
rency: Structure versus Automata, volume 1043 of LNCS.
Springer, 1996.

[Vardi, 2011] Moshe Y. Vardi. The rise and fall of linear time
logic. In Proc. of GandALF, 2011.

