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Abstract

In this paper we study verification of situation calculus ac-
tion theories against first-order µ-calculus with quantification
across situations. Specifically, we consider µLa and µLp,
the two variants of µ-calculus introduced in the literature for
verification of data-aware processes. The former requires that
quantification ranges over objects in the current active domain,
while the latter additionally requires that objects assigned to
variables persist across situations. Each of these two logics
has a distinct corresponding notion of bisimulation. In spite
of the differences we show that the two notions of bisimu-
lation collapse for dynamic systems that are generic, which
include all those systems specified through a situation calculus
action theory. Then, by exploiting this result, we show that
for bounded situation calculus action theories, µLa and µLp

have exactly the same expressive power. Finally, we prove
decidability of verification of µLa properties over bounded
action theories, using finite faithful abstractions. Differently
from the µLp case, these abstractions must depend on the
number of quantified variables in the µLa formula.

1 Introduction
In this paper we study verification of first-order µ-calculus
with quantification across situations as a verification language
for situation calculus action theories (McCarthy and Hayes
1969; Reiter 2001). Such theories can be seen as one of
the most prominent examples in AI of data-aware processes,
i.e., dynamic systems in which a rich (first-order) description
of the current state is married with a description of how
such state evolves through actions (Bhattacharya et al. 2007;
Deutsch et al. 2009; Bagheri Hariri et al. 2013a).

After the seminal work by De Giacomo, Ternovskaia,
and Reiter (1997) and especially by Claßen and Lake-
meyer (2008), there has been an increasing interest in verifi-
cation in the situation calculus, and recently many important
results have been devised regarding sound, complete, and
terminating verification, including (Belardinelli, Lomuscio,
and Patrizi 2012; De Giacomo, Lesperance, and Patrizi 2012;
Bagheri Hariri et al. 2013a; 2013b; Zarrieß and Claßen 2014;
Belardinelli, Lomuscio, and Patrizi 2014; De Giacomo, Les-
perance, and Patrizi 2016; De Giacomo et al. 2016).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

These results are concerned with verification logics that
are variants of those studied in the area of model check-
ing of finite-state transition systems, like LTL, CTL, or
modal µ-calculus, which subsumes all of them in the
propositional setting (Clarke, Grumberg, and Peled 1999;
Baier and Katoen 2008). Obviously, to use them in the
context of formalisms with first-order state description,
such logics need to be extended with the ability of query-
ing the state in first-order logic. However in most pro-
posals, e.g., (De Giacomo, Lesperance, and Patrizi 2012;
De Giacomo et al. 2014), such ability is limited to the
use of first-order sentences (closed formulas) instead of
propositions, without the possibility of quantifying across
states/situations. Quantification across (states/situations)
refers to the possibility of using variables quantified in the cur-
rent situation also in future situations. Without quantification
across, these first-order temporal logics remain quite similar
to their propositional variants (though with infinitely many
propositions corresponding to first-order sentences, instead
of the usual finite ones). In particular, notions like bisimu-
lation and bisimulation invariance remain essentially those
known for the propositional case. Only very few papers study
verification logics with quantification across (Belardinelli,
Lomuscio, and Patrizi 2012; Bagheri Hariri et al. 2013a;
Belardinelli, Lomuscio, and Patrizi 2014; De Giacomo, Les-
perance, and Patrizi 2016).

In this paper, we study in depth first-order µ-calculus
with quantification across. In particular, we consider the
two basic µ-calculus variants proposed in literature, µLa
and µLp, which are characterized by different restrictions
on how quantification across is controlled. The logic µLa
requires quantification to range over objects in the active
domain, i.e., in the extension of some fluent in the cur-
rent situation (in situation calculus terms). The logic µLa
was studied by Bagheri Hariri et al. (2013a) in the con-
text of data-centric dynamic systems (DCDS) and in its
CTL fragment by Belardinelli, Lomuscio, and Patrizi (2012;
2014). The logic µLp is a restriction of µLa in which it
is further required that the objects assigned to the quanti-
fied variables must persist across the states traversed while
checking the formula. The logic µLp was also studied by
Bagheri Hariri et al. (2013a), and then in the context of situa-
tion calculus action theories (De Giacomo, Lesperance, and
Patrizi 2016).
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As shown by Bagheri Hariri et al. (2013a), these two logics
can be characterized by two distinct notions of bisimulation
over transition systems: history preserving bisimulation (or
a-bisimulation) for µLa, and persistence preserving bisim-
ulation (or p-bisimulation) for µLp. Specifically, µLa is
invariant wrt a-bisimulation while µLp is invariant wrt p-
bisimulation, where bisimulation invariance means that two
bisimilar states satisfy the same formulas.

In addition, decidability results for verification have been
devised. A crucial notion to get decidability of verification in
dynamic system formalisms that allow for first-order state de-
scriptions is that of state-boundedness (Belardinelli, Lomus-
cio, and Patrizi 2012; De Giacomo, Lesperance, and Patrizi
2012; Bagheri Hariri et al. 2013a). In particular, De Giacomo,
Lesperance, and Patrizi (2012) show that verification of first-
order µ-calculus without quantification across over bounded
action theories in the situation calculus is decidable. Such
theories have an infinite object domain, but the number of
object tuples that belong to fluents in each situation remains
bounded. Nonetheless, an agent may deal with an infinite
number of objects over the course of an infinite execution.

These results are extended to deal with quantification
across by De Giacomo, Lesperance, and Patrizi (2016),
who show that models of bounded situation calculus ac-
tion theories can be faithfully abstracted into p-bisimilar
finite-state transition systems, thus getting decidability of
verification for µLp. Also De Giacomo, Lesperance, and
Patrizi (2016) for situation calculus, and Bagheri Hariri
et al. (2013a) for DCDS, show that, differently from the
µLp case, in the µLa case no faithful finite abstraction
can exist that is independent from the formula to check.
Interestingly, Belardinelli, Lomuscio, and Patrizi (2012;
2014) show that, for their bounded first-order defined transi-
tion systems, a faithful abstraction depending on the number
of variables in the formula exists for the CTL fragment of
µLa. However, it remained open till now whether their result
extends to full µLa.

Here we investigate thoroughly the two logics µLp and
µLa and the bisimulation notions associated to them. We
establish quite surprising results wrt the expressive power of
the two logics, and we establish decidability of verification
for µLa against bounded situation calculus action theories.

Specifically, we present the following results.

• For transition systems that are “generic”, such as those gen-
erated by logical theories, and in particular situation calcu-
lus theories, the notions of p-bisimilarity and a-bisimilarity
collapse, as long as we keep the object domain infinite (a
natural assumption in situation calculus).

• Moreover, for generic transition systems with the addi-
tional condition that the active domain of each state is fi-
nite (though not necessarily smaller than any given bound),
µLa and µLp have exactly the same expressive power, in
the sense that if there is a µLa formula that is able to dis-
tinguish two states/situations, then there is one expressible
in µLp, and viceversa.

• As a consequence of the equivalence between p-
bisimilarity and a-bisimilarity, we get that if two generic
transition systems with infinite object domains are p-

bisimilar, they satisfy the same µLa formulas. Then we
strengthen this result by showing that, if one of the transi-
tion systems has a finite object domain that is large enough,
then it preserves all µLa formulas that use only a prede-
fined number of variables.

• We further show that, for bounded generic transition sys-
tems, and for a set of variables, it is always possible to
define a faithful finite-state abstraction that preserves µLa
formulas whose variables belong to that set. This in partic-
ular applies to models of bounded situation calculus action
theories.

• Finally, we show that given a bounded situation calculus
action theory (including those with incomplete informa-
tion), and a set of variables, we can effectively construct
a new situation calculus action theory with finite domain
that preserves µLa formulas whose variables belong to
that set. In this way, we get decidability of verification
of µLa formulas over bounded situation calculus action
theories.

The impact of these results is quite strong also for another
reason. Bagheri Hariri et al. (2013a) have shown that verifica-
tion of first-order LTL with quantification across time points
ranging on active domain is undecidable for trivial bounded-
state transition systems. Then, using the folk assumption that
µ-calculus can capture LTL also in the first-order case, e.g.,
(Okamoto 2010), it was concluded that µLa verification is
undecidable for bounded transition systems (hence, includ-
ing models of bounded situation calculus action theories).
Here, we show that this is not true, and that µLa verification
is indeed decidable over bounded situation calculus action
theories. This has the consequence that it is not true that first-
order mu-calculus can capture first-order LTL in general! In
other words, once we allow for quantification across, the abil-
ity of LTL of talking about single traces cannot be mimicked
anymore by µ-calculus. To the best of our knowledge this is
the very first formal proof of this notable fact.

2 Situation Calculus and Boundedness
The situation calculus (McCarthy and Hayes 1969; Reiter
2001) is a logical language for representing and reasoning
about dynamic worlds with three sorts: objects, actions, and
situations. We assume to have countably infinitely many ob-
ject constants, on which we adopt the unique name assump-
tion (UNA). We assume to have a finite number of action
types, each of which takes a tuple of objects as arguments.
A situation term denotes a sequence of actions: the constant
S0 denotes the initial situation (no action has yet been done),
whereas term do(a, s) denotes the successor situation result-
ing from performing action a in situation s. We assume to
have a finite set F of fluents, i.e., predicates whose extension
varies from situation to situation. Fluents take a situation
term as their last argument (e.g., Holding(x, s)), while the
other arguments are of sort object. We assume that there
are no functions other than constants and no predicates other
than fluents.

Within this language, one can formulate action theories to
describe how the world changes as a result of actions. A well
studied and popular type of such theories are basic action
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theories (Reiter 2001). A basic action theoryD is a collection
of first-order axioms (plus a second-order characterization of
situation terms) conveniently specifying (in terms of size and
computational properties): (i) actions’ preconditions, char-
acterized through precondition axioms involving a special
predicate Poss(a, s) capturing when action a is executable in
situation s; (ii) actions’ effects and non-effects (i.e., solving
the frame problem) by the so-called successor state axioms;
and (iii) an initial situation description, expressed as a first-
order logic theory where all fluents are instantiated to S0,
capturing the world’s initial state. We denote by C the set of
constants explicitly mentioned in the initial situation descrip-
tion or in precondition or successor state axioms. Actually,
for simplicity, w.l.o.g., we assume that all constants in C ap-
pear in the initial situation description. Notice that these are
the constants we actually predicate on (while on the others
we only predicate existence and name uniqueness).

An action theory D is bounded, if for a given natural num-
ber B at every executable situation (i.e., reachable through a
finite sequence of executable actions), the number of distinct
object tuples occurring in the extension of each fluent of D
is at most B. Thus, the interpretation of a fluent at every
situation does not use more than B distinct tuples, though
these change from situation to situation and collectively are
infinitely many (De Giacomo, Lesperance, and Patrizi 2012;
2016). For convenience, with a little abuse of notation, we
say that an action theory is bounded by b when in each sit-
uation the number of objects occurring in the extension of
all fluents is at most b. Notice that, when D is bounded by b,
then B = |F| · bk, where k is the maximal arity of fluents.

A bookshelf is a prototypical example of boundedness.

Example 1 (Avid Reader). An agent is an avid reader and
has a bookshelf of a given size. He acquires books, puts them
in the bookshelf, reads them, and then puts them back in the
bookshelf or gives them away. The available space in the
bookshelf is given in units and each book consumes a certain
number of units (e.g., one for simplicity). The reader cannot
acquire a book if there is not enough space in the bookshelf.

The possible actions are the following:

• acquire(book). Pre: book not already in the bookshelf,
space available in the bookshelf. Post: book in the book-
shelf and one less unit available in the bookshelf.

• read(book). Pre: book in the bookshelf. Post: book in the
hand of the avid reader, book not in the bookshelf.

• store(book). Pre: book in the hand of the avid reader,
space available in the bookshelf. Post: book in the book-
shelf and one less unit available in the bookshelf.

• discard(book). Pre: book in the hand of the avid reader.
Post: book not in the hand of the avid reader and not in the
bookshelf.

It is easy to write explicitly precondition and successor state
axioms, which we omit for sake of brevity. It is also easy to
see that the resulting action theory is indeed bounded.

3 Transition Systems
When focussing on verification of temporal properties we do
not need to deal directly with full action theory models, since

both actions and situations (both of which do not appear ex-
plicitly in formulas to verify) can be essentially disregarded
(De Giacomo, Lesperance, and Patrizi 2012; 2016). Specifi-
cally, we can focus on transition systems.

We denote by IntF,C∆ , the set of all possible interpretations
of the situation-suppressed fluents in F (i.e., fluents with the
situation arguments suppressed) and of the constants in C,
over the object domain ∆. A transition system (TS) (over
the situation-suppressed fluents F , constants C, and object
domain ∆) is a tuple T = 〈∆, Q, q0,→, I〉, where:
• Q is the set of states;
• q0 ∈ Q is the initial state;
• → ⊆ Q×Q is the transition relation; and
• I : Q 7→ IntF,C∆ is the labeling function associating to

each state q an interpretation I(q) = 〈∆, ·I(q)〉 such that
the constants in C are interpreted in the same way in all
the states over which I is defined.

We denote by adom(I(q)) the active domain of I(q), i.e., the
set of objects occurring in the extension of some (situation-
suppressed) fluent in q union the interpretation of constants
in C, and by Ĩ(q) the restriction of I(q) to its active domain.

Among the various TSs, we are interested in those induced
by models of the situation calculus action theoryD. Consider
a modelM ofD with object domain ∆1 and situation domain
S. Given situation s, we can associate to s a first-order
interpretation IM (s)

.
= 〈∆, ·I〉, where: (i) for every c ∈ C,

cI = cM and (ii) for every (situation-suppressed) fluent F
of D, F I = {~d | 〈~d, s〉 ∈ FM}. Then, we can define the
TS induced by M as the labelled TS TM = 〈∆, Q, q0, I,→〉
such that:
• Q = S is the set of possible states, each corresponding to

a distinct executable situation in S;
• q0 = SM0 ∈ Q is the initial state, with SM0 the initial

situation of D;
• → ⊆ Q×Q is the transition relation such that q → q′ iff

there exists some action a such that 〈a, q〉 ∈ PossM and
q′ = doM (a, q).

• I : Q 7→ IntF,C∆ is the labeling function associating to
each state (situation) q the interpretation I(q) = IM (q).

The TS induced by a model M is essentially the tree of
executable situations, with each situation labelled by an in-
terpretation of fluents (and constants), corresponding to the
interpretation that M associates to that situation. Notice that
transitions do not carry any information about the correspond-
ing triggering action.

Generic TS. Next we introduce a key property for TS:
genericity (Abiteboul, Hull, and Vianu 1995), also called
uniformity by Belardinelli, Lomuscio, and Patrizi (2014).

We start by recalling the standard notions of isomorphism
and isomorphic interpretations. Two first-order interpreta-
tions I1 = 〈∆1, ·I1〉 and I2 = 〈∆2, ·I2〉, over the same
fluents F and constants C, are said to be isomorphic, writ-
ten I1 ∼ I2, if there exists a bijection (called isomorphism)

1Note that ∆ is infinite, since we have assumed that the theories
we consider include infinitely many constants with UNA.
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h : ∆1 7→ ∆2 such that: (i) for every F ∈ F , ~x ∈ F I1 if
and only if h(~x) ∈ F I2 ; (ii) for every c ∈ C, cI2 = h(cI1).
Intuitively, for two interpretations to be isomorphic, it is re-
quired that one can be obtained from the other by renaming
the individuals in the interpretation domain. Notice that,
necessarily, the interpretation domains of isomorphic inter-
pretations have the same cardinality. When needed, to make
it explicit that h is an isomorphism between I1 and I2, we
write I1 ∼h I2.
Definition 1 (Generic Transition System). A TS T =
〈∆, Q, q0,→, I〉 is said to be generic if: for every
q1, q

′
1, q2 ∈ Q and every bijection h : ∆ 7→ ∆, if I(q1) ∼h

I(q2) and q1 → q′1, then there exists q′2 ∈ Q such that
q2 → q′2 and I(q′1) ∼h I(q′2).

Intuitively, genericity requires that if two states are iso-
morphic they induce the “same” transitions (modulo isomor-
phism). This property is actually always true if the next
states are built by a first-order specification involving only
the current state and the next one, as long as we do not use
predefined domains with special properties that are specified
extra-logically (e.g., we allow for natural numbers). In partic-
ular it holds for situation calculus specifications (and indeed
virtually all first-order based formalisms for reasoning about
actions used in AI) (Reiter 2001).
Theorem 2. For every model M of a situation calculus ac-
tion theory D, the generated TS TM is generic.

Proof. By construction of TM .

Bounded-state TS. Next we look at the counterpart of
boundedness for action theories in TSs.
Definition 3 (Bounded-State Transition System). A TS T =
〈∆, Q, q0,→, I〉 is said to be bounded-state if for a given b
we have that |adom(I(q))| ≤ b for every q ∈ Q.

That is, we say that T is bounded-state if there is a bound
on the number of objects that can be accumulated in the same
state. Notice that this does not disallow the possibility of
accumulating infinitely many objects along an infinite run (or
the entire TS for the matter).

As expected, bounded situation calculus action theories
give rise to bounded-state TSs.
Theorem 4. For every model M of a situation calculus ac-
tion theoryD bounded by b, the generated TS TM is bounded-
state, with each state bounded by b.

Proof. Follows directly from the definition of action theory
bounded by b given in Section 2.

4 Verification Logics
As a verification logic to specify temporal properties, we
focus on modal µ-calculus (Emerson 1996; Stirling 2001;
Bradfield and Stirling 2007), one of the most powerful tem-
poral logics for which model checking has been investigated.
It is well-known that in the propositional setting µ-calculus
is able to capture both linear time logics such as LTL and
PSL (Property Specification Language2), and branching time

2http://www.eda.org/ieee-1850/

logics such as CTL and CTL* (Clarke, Grumberg, and Peled
1999; Baier and Katoen 2008). The main characteristic of
modal µ-calculus is the ability of expressing directly least
and greatest fixpoints of (predicate-transformer) operators
formed using formulae relating the current state to the next
one. By using such fixpoint constructs one can easily express
sophisticated temporal properties defined by induction or
co-induction.

In the following we consider two first-order variants of
modal µ-calculus that have been considered in literature.

The Logic µLa. The first logic is characterized by the as-
sumption that quantification over objects is restricted to those
that are present in the current active domain, and was studied
by Bagheri Hariri et al. (2013a) and by Belardinelli, Lomus-
cio, and Patrizi (2014)3. The syntax of µLa is

Φ ::= ϕ | ¬Φ | Φ1∧Φ2 | ∃x.LIVE(x)∧Φ | 〈−〉Φ | Z | µZ.Φ,
where ϕ is a first-order formula expressed using situation-
suppressed fluents in F and constants in C, the modal op-
erator 〈−〉Φ denotes the existence of a transition from the
current state to a next state where Φ holds, and µZ.Φ denotes
the least fixpoint of the formula Φ seen as a predicate trans-
former wrt Z. We use νZ.Φ as the (standard) abbreviation
for ¬µZ.¬Φ[Z/¬Z], to denote the greatest fixpoint of Φ.
Note that in µLa quantification across ranges over objects in
the current active domain. That is, individuals over which
quantification ranges must belong to the active domain of the
current situation/state of the TS, as required by LIVE(·). As
usual in µ-calculus, formulas of the form µZ.Φ (and νZ.Φ)
must obey to the syntactic monotonicity of Φ wrt Z, which
states that every occurrence of the variable Z in Φ must be
within the scope of an even number of negation symbols.
This ensures that the semantics of µZ.Φ and νZ.Φ is well
defined.
Example 2. The µLa formula

∀x.Stud(x) ⊃ µY.((∃y.Grad(x, y)) ∨ 〈−〉Y )

states that, for each student x in the current state/situation,
there exists an evolution that eventually leads to the gradua-
tion of x (with some final mark y).

To interpret µLa formulas over a TS T =
〈∆, Q, q0,→, I〉, we use valuations (v, V ) formed by
an individual variable valuation v and a predicate variable
valuation V parameterized by v, i.e., which maps each
predicate variable Z to a subset V (v, Z) of Q. We define
the extension function (·)T(v,V ), which maps µLa formulas to
subsets of Q, as shown in Figure 1.4

3Actually, Belardinelli, Lomuscio, and Patrizi (2014) consider
the CTL fragment of µLa.

4By mentioning states/situations explicitly, it is also possible to
define the least and greatest fixpoint operators directly in second-
order logic as follows (De Giacomo, Ternovskaia, and Reiter 1997):

µZ.Φ[s] ≡ ∀Z.(∀ŝ.Φ[ŝ] ⊃ Z(ŝ)) ⊃ Z(s)
νZ.Φ[s] ≡ ∃Z.(∀ŝ.Z(ŝ) ⊃ Φ[ŝ]) ∧ Z(s)

Note that Φ may contain free individual and predicate variables, and
indeed these remain free in µZ.Φ and νZ.Φ.
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(ϕ)T(v,V ) = {q | q ∈ Q and I(q), v |= ϕ}
(¬Φ)T(v,V ) = Q \ (Φ)T(v,V )

(Φ1 ∧ Φ2)T(v,V ) = (Φ1)T(v,V ) ∩ (Φ2)T(v,V )

(∃x. LIVE(x) ∧ Φ)T(v,V ) = {q | ∃d ∈ adom(I(q)).
q ∈ (Φ)T(v,V )[x/d]}

(〈−〉Φ)T(v,V ) = {q | ∃q′.q → q′ and q′ ∈ (Φ)T(v,V )}
(Z)T(v,V ) = V (Z)

(µZ.Φ)T(v,V ) =
⋂
{E ⊆ Q | (Φ)T(v,V )[Z/E] ⊆ E}

(v, V )[x/d] stands for (v′, V ) where v′ is as v except that
v′(x) = d. Similarly (v, V )[Z/E ] stands for (v, V ′) where
V ′ is as V except that V ′(v, Z) = E .

Figure 1: Semantics of µLa

Given a µLa formula Φ, we say that a TS T satisfies
Φ at state q under v and V , written T, q, (v, V ) |= Φ, if
q ∈ (Φ)T(v,V ). When Φ is closed on predicate variables, we
omit V , as irrelevant, and write T, q, v |= Φ. If Φ is closed
on both individual and predicate variables we simply write
T, q |= Φ. For closed formulas, we say that T satisfies Φ,
written T |= Φ, if T, q0 |= Φ.

History-preserving bisimulation. To µLa corresponds
the notion of history-preserving bisimulation (or a-
bisimulation). Given a bijection h : Q 7→ Q′, we de-
note with DOM(h) the domain of h, i.e., the set of ele-
ments in Q for which h is defined, and with IMG(h) the
image of h, i.e., the set of elements q′ in Q′ such that
q′ = h(q) for some q ∈ Q. A bijection h′ extends h if
DOM(h) ⊆ DOM(h′) and h′(x) = h(x) for all x ∈ DOM(h)
(or equivalently IMG(h) ⊆ IMG(h′) and h′−1(y) = h−1(y)
for all y ∈ IMG(h)).

A history-preserving bisimulation relation can be de-
fined as follows. Let T1 = 〈∆1, Q1, q10,→1, I1〉 and
T2 = 〈∆2, Q2, q20,→2, I2〉 be two TSs (over the situation-
suppressed fluents, and constants of an action theory D), and
let H be the set of all possible bijections h : D1 7→ D2, for
D1 ⊆ ∆1 and D2 ⊆ ∆2. A relation R ⊆ Q1 ×H ×Q2 is a
history-preserving bisimulation (or a-bisimulation) between
T1 and T2, if 〈q1, h, q2〉 ∈ R implies that:

1. Ĩ1(q1) ∼h Ĩ2(q2), i.e., the interpretations I(q1) and
I(q2), when restricted to their active domains, are iso-
morphic equivalent according to h;

2. for each q′1 ∈ Q1, if q1 →1 q
′
1 then there exists q′2 ∈ Q2

such that:

(a) q2 →2 q
′
2, and

(b) there exists a bijection h′ : DOM(h) ∪ adom(I1(q′1))
7→ IMG(h) ∪ adom(I2(q′2)) that is an extension of h
and such that 〈q′1, h′, q′2〉 ∈ R;

3. for each q′2 ∈ Q2, if q2 →2 q
′
2 then there exists q′1 ∈ Q1

such that:

(a) q1 →1 q
′
1, and

(b) there exists a bijection h′ : DOM(h) ∪ adom(I1(q′1))
7→ IMG(h) ∪ adom(I2(q′2)) that is an extension of h
and such that 〈q′1, h′, q′2〉 ∈ R.

We say that a state q1 ∈ Q1 is history-preserving bisim-
ilar (or a-bisimilar) to q2 ∈ Q2, written q1 ≈a q2, if there
exists an a-bisimulation R between T1 and T2 such that
〈q1, h, q2〉 ∈ R, for some h; when needed, we also write
q1 ≈ah q2, to explicitly name h. Finally, T1 is said to be
a-bisimilar to T2, written T1 ≈a T2, if q10 ≈a q20. It is
immediate to see that bisimilarity between states and TSs,
i.e., the (overloaded) relation ≈a, is an equivalence relation.

Using the notion of a-bisimilarity, one can prove a suitable
version of the classical bisimulation invariance result for the
µ-calculus, which states that bisimilar TSs satisfy exactly the
same µ-calculus formulas, see e.g., (Bradfield and Stirling
2007).
Theorem 5 (Bagheri Hariri et al. 2013a). Consider
two TSs T1 = 〈∆1, Q1, q10,→1, I1〉 and T2 =
〈∆2, Q2, q20,→2, I2〉 with ∆1 and ∆2 infinite. If T1 ≈a T2,
then for every µLa closed formula Φ, T1 |= Φ if and only if
T2 |= Φ.

The opposite direction of this theorem does not hold in
general, but we will show next that it holds for generic TSs.

The Logic µLp. Next, we consider a restriction of µLa
called µLp, studied by Bagheri Hariri et al. (2013a) and by
De Giacomo, Lesperance, and Patrizi (2016). The syntax of
µLp is

Φ ::= ϕ | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ |
LIVE(~x) ∧ 〈−〉Φ | LIVE(~x) ∧ [−]Φ | Z | µZ.Φ

Note that in µLp quantification across ranges over objects
in the current active domain that persist in the extension of
some fluents across situations. This is obtained by forcing
through LIVE(~x) ∧ 〈−〉Φ and LIVE(~x) ∧ [−]Φ that the vari-
ables occurring free in Φ5 are assigned to objects that are in
the active domain of the current situation/state.
Example 3. The following µLp formula:

∀x.Stud(x) ⊃ µY.((∃y.Grad(x, y)) ∨ LIVE(x) ∧ 〈−〉Y )

states that for each student x in the current state/situation,
there exists an evolution where x remains in the active do-
main, and x eventually graduates (with some final mark y).

Persistence-preserving bisimulation. The bisimulation
relation that captures µLp can be defined as fol-
lows. Let T1 = 〈∆1, Q1, q10,→1, I1〉 and T2 =
〈∆2, Q2, q20,→2, I2〉 be two TSs over the situation-
suppressed fluents F and constants C, and let H be the set
of all possible bijections h : D1 7→ D2, for D1 ⊆ ∆1 and
D2 ⊆ ∆2. A relation R ⊆ Q1 ×H × Q2 is a persistence-
preserving bisimulation (or p-bisimulation) between T1 and
T2, if 〈q1, h, q2〉 ∈ R implies that:

5With the proviso that second order variables are substituted by
their corresponding fixpoint formula.
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1. Ĩ1(q1) ∼h Ĩ2(q2);

2. for each q′1 ∈ Q1, if q1 →1 q
′
1 then there exists q′2 ∈ Q2

such that:

(a) q2 →2 q
′
2, and

(b) there exists a bijection h′ : adom(I1(q1)) ∪
adom(I1(q′1)) 7→ adom(I2(q2)) ∪ adom(I2(q′2))
such that its restriction h′|adom(I1(q1)) coincides with
h|adom(I1(q1)) and 〈q′1, h′|adom(I1(q′1)), q

′
2〉 ∈ R;

3. for each q′2 ∈ Q2, if q2 →2 q
′
2 then there exists q′1 ∈ Q1

such that:

(a) q1 →1 q
′
1, and

(b) there exists a bijection h′ : adom(I1(q1)) ∪
adom(I1(q′1)) 7→ adom(I2(q2)) ∪ adom(I2(q′2))
such that its restriction h′|adom(I1(q1)) coincides with
h|adom(I1(q1)) and 〈q′1, h′|adom(I1(q′1)), q

′
2〉 ∈ R.

We say that a state q1 ∈ Q1 is persistence-preserving
bisimilar (or p-bisimilar) to q2 ∈ Q2, written q1 ≈p q2, if
there exists a p-bisimulation R between T1 and T2 such that
〈q1, h, q2〉 ∈ R, for some h; when needed, we also write
q1 ≈ph q2, to explicitly name h. Finally, a TS T1 is said to be
p-bisimilar to T2, written T1 ≈p T2, if q10 ≈p q20. Again,
p-bisimilarity is obviously an equivalence relation.

Theorem 6 (Bagheri Hariri et al. 2013a). Consider two TSs
T1 = 〈∆1, Q1, q10,→1, I1〉 and T2 = 〈∆2, Q2, q20,→2

, I2〉 with ∆1 and ∆2 infinite. If T1 ≈p T2, then for every
µLp closed formula Φ, T1 |= Φ if and only if T2 |= Φ.

Again the other direction of this theorem does not hold in
general, but we show next that it holds for generic TSs.

For a bounded situation calculus action theory D, we can
construct finite TS faithful abstractions of the models of D
(De Giacomo, Lesperance, and Patrizi 2012; De Giacomo,
Lesperance, and Patrizi 2016).

Theorem 7 (De Giacomo, Lesperance, and Patrizi 2016).
Given a model M of a bounded situation calculus action
theory, there exists a finite state TS T fM that is p-bisimilar to
the TS TM induced by M .

Putting these two results together, we have that for every
model M of D there exists a finite TS T fM which is a faith-
ful abstraction of TM , i.e., such that for every µLp closed
formula Φ, TM |= Φ if and only if T fM |= Φ. Hence, we can
use T fM to model check properties of interest over TM .

Unfortunately, in the case of µLa, it is easy to see that
no finite TS exists that is a faithful abstraction of TM inde-
pendent from the µLa formula to verify. Indeed, assume to
have an action that replaces an object in the active domain
by one of the objects assigned to its parameters. Then, for
every bound n on the number of objects in a candidate finite
abstraction, we can write a (fixpoint-free) formula saying that
there exists a finite run with more than n distinct objects:

∃x1.LIVE(x1) ∧ 〈−〉(∃x2.LIVE(x2) ∧ x2 6=x1 ∧
〈−〉(∃x3LIVE(x3) ∧ x3 6=x1 ∧ x3 6=x2 ∧
· · ·
〈−〉(∃xn+1LIVE(xn+1) ∧ xn+1 6=x1 ∧ · · · ∧ xn+1 6=xn)))

This formula is false in the finite abstraction, while true in
the original TS, where objects are not “reused” (De Giacomo,
Lesperance, and Patrizi 2016).

5 Expressiveness
A notable property of generic TSs is that if the interpretations
associated to two states of the same TS are isomorphic wrt
the active domain then they are p-bisimilar.

Lemma 8. If T = 〈∆, Q, q0,→, I〉 is a generic TS, then for
every two states q, q′ ∈ Q and every bijection h : D 7→ D
with D ⊆ ∆ such that Ĩ1(q1) ∼h Ĩ2(q2) we have q ≈ph q′.

Proof (sketch). By co-induction, we show that the relation
R = {〈q1, h, q2〉 | Ĩ1(q1) ∼h Ĩ2(q2)} is a p-bisimulation,
by exploiting the very definition of generic TS.

Observe that for Lemma 8 to hold, the two states need
to belong to the same generic TS. If the two states belong
to different TSs, then we cannot exploit genericity (which
relates states of the same TS) and the claim would not hold.
Observe also that the opposite direction of Lemma 8 trivially
holds, as a consequence of the definition of p-bisimilarity.

Exploiting Lemma 8, we prove the key result of this sec-
tion: on generic TSs, p-bisimilarity implies a-bisimilarity.

Theorem 9. Consider two generic TSs T1 =
〈∆1, Q1, q10,→1, I1〉 and T2 = 〈∆2, Q2, q20,→2, I2〉 with
∆1 and ∆2 infinite. Then, T1 ≈p T2 if and only if T1 ≈a T2.

Proof (sketch). The “if” direction is immediate and holds
also for TS that are not generic, since ≈a is stricter than ≈p.

For the “only-if” direction, we show by co-induction
that the relation R = {〈q1, h, q2〉 | q1 ≈ph q2} is an a-
bisimulation.

For the fist condition, if 〈q1, h, q2〉 ∈ R then, since q1 ≈ph
q2, we have that Ĩ1(q1) ∼h Ĩ2(q2), i.e., R is closed wrt the
first condition of a-bisimulation.

For the second condition consider that, by the second
condition of p-bisimulation, we have that for each q′1 ∈
Q1, if q1 →1 q′1 then there exists q′2 ∈ Q2 such that:
q2 →2 q

′
2 and there exists a bijection h′ : adom(I1(q1)) ∪

adom(I1(q′1)) 7→ adom(I2(q2)) ∪ adom(I2(q′2)) such
that its restriction h′|adom(I1(q1)) coincides with h and
〈q′1, h′|adom(I1(q′1)), q

′
2〉 ∈ R.

Now let us consider h′′ obtained by extending h, as
required by a-bisimulation (not only its restriction to
adom(I1(q1)), as required by p-bisimulation) such that for
all objects d in adom(I1(q′1)) but not in DOM(h) we have
h′′(d) = h′(d). Consider g = h′− ◦ h′′. We have that (g can
be extended to cover the whole ∆2 so that) I(q2) ∼g I(q2);
indeed observe that h′′, h′, and h are identical over the ac-
tive domain of q2, hence, wrt I(q2), g is only renaming
objects outside the active domain. By genericity, since we
have q2 → q′2, there exists a state q′′2 such that q2 → q′′2 and
I(q′2) ∼g I(q′′2 ). By Lemma 8, this implies that q′2 ≈pg q′′2 .
On the other hand 〈q′1, h′|adom(I1(q′1)), q

′
2〉 ∈ R implies

q′1 ≈
p
h′ q′2, hence, considering that h′ ◦ g = h′′, by com-

posing the two p-bisimulations we have that q′1 ≈
p
h′′ q′′2 , i.e.,

〈q′1, h′′, q′′2 〉 ∈ R. Hence we can conclude that R is closed
under the second condition of a-bisimulation.
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The proof for the third condition of a-bisimulation is anal-
ogous. The claim follows.

As an immediate consequence we have that if two TSs
are p-bisimilar, being also a-bisimilar, by invariance wrt to
a-bisimilarity (Theorem 5), they satisfy the same closed µLa
formulas.

Theorem 10. Consider two generic TSs T1 =
〈∆1, Q1, q10,→1, I1〉 and T2 = 〈∆2, Q2, q20,→2, I2〉 with
∆1 and ∆2 infinite. If T1 ≈p T2 then for every µLa closed
formula Φ, T1 |= Φ if and only if T2 |= Φ.

Next, we study the converse of bisimulation invariance,
i.e., of Theorems 5 and 6. In other words, we are interested
in understanding for which TSs we have that if two states
satisfy exactly the same µLp (resp., µLa) formulas they are
p-bisimilar (resp., a-bisimilar). For that purpose we introduce
generic finite-active-domain TSs, which are generic TSs with
the additional condition that the active domain of every state
is finite (though not necessarily bounded by some given b).
Obviously, such class of TSs includes generic bounded-state
TSs, but also TSs obtained by starting from a database and
updating it at each step with a finite number of tuples, as e.g.,
DCDSs (Bagheri Hariri et al. 2013a).

Theorem 11. Consider two generic finite-active-
domain TSs T1 = 〈∆1, Q1, q10,→1, I1〉 and
T2 = 〈∆2, Q2, q20,→2, I2〉 with ∆1 and ∆2 infinite. If for
every µLp closed formula Φ, T1 |= Φ if and only if T2 |= Φ
then T1 ≈p T2.

Proof (sketch). We show by co-induction that the relation
R = {〈q1, h, q2〉 | for all Φ ∈ µLp. T1, q1 |= Φ iff T2, q2 |=
Φ and Ĩ1(q1) ∼h Ĩ2(q2)} is a p-bisimulation. R satisfies
the first condition of p-bisimulation by definition. Suppose
towards contradiction that it does not satisfy the second
condition: i.e., there is a tuple 〈q1, h, q2〉 and q′1 such that
q1 →1 q

′
1 but there is no extension h′ of h and no q′2 such that

q2 →1 q
′
2 and h′|adom(I1(q1)) coincides with h|adom(I1(q1)),

adom(I1(q′1)) ∼h′ adom(I2(q′2)), and q′1 and q′2 satisfy the
same closed µLp formulas.

Consider the isomorphism type of I1(q′1), i.e., the set
of interpretations that are isomorphic to I1(q′1). Since
adom(I1(q′1)) is finite, there exists a first-order formula with
one existentially quantified variable for each object in the ac-
tive domain that characterizes the isomorphism type (De Gi-
acomo, Lesperance, and Patrizi 2012; 2016), which we call
characteristic formula. In fact, from such formula we can
construct a first-order formula Ψ(~x), which leaves open the
variables ~x corresponding to objects already occurring in
adom(I1(q1)). In this way, in Ψ(~x), we are parameterizing
the characteristic formula on ~x, forcing the objects coming
from adom(I1(q1)) to persist.

Furthermore suppose that for each q′2 there is a closed
µLp formula that is true in q′1 but false in q′2. Notice that
all q′2 belonging to the isomorphism type corresponding to
Ψ(~x) are p-bisimilar by genericity (Lemma 8) and hence
by p-bisimulation invariance (Theorem 6) satisfy the same
µLp formulas. Hence if such a formula exists it is the same
for all such states. Let’s denote it by Φ. Then T1, q1 |=
∃~x.LIVE(~x) ∧ 〈−〉(Ψ(~x) ∧ Φ) and T2, q2 |= ∀~x.LIVE(~x) ⊃

[−](Ψ(~x) ⊃ ¬Φ), thus q1 and q2 do not satisfy the same µLp
formulas, and we get a contradiction. The third condition can
be proven analogously.

By considering that µLp is a subset of µLa, as an immedi-
ate consequence of Theorems 11 and 9, we get the analogous
result for µLa.
Theorem 12. Consider two generic finite-active-
domain TSs T1 = 〈∆1, Q1, q10,→1, I1〉 and
T2 = 〈∆2, Q2, q20,→2, I2〉 with ∆1 and ∆2 infinite.
If for every µLa closed formula Φ, T1 |= Φ if and only if
T2 |= Φ then T1 ≈a T2.

Proof (sketch). The proof exploits the fact that µLa ex-
tends µLp, and that equivalence wrt to µLp formulas guar-
antees p-bisimilarity, which in turn implies a-bisimilarity for
generic finite-active-domain TSs.

Summarizing, given a state q1 of TS T1 and a state q2 of
TS T2, we have:
• always: q1 ≈a q2 implies q1 ≈p q2

q1 ≈p q2 implies q1 ≈µLp q2

q1 ≈a q2 implies q1 ≈µLa q2

q1 ≈µLa q2 implies q1 ≈µLp q2

• when T1 and T2 are generic:

q1 ≈p q2 implies q1 ≈a q2

q1 ≈p q2 implies q1 ≈µLa q2

• when T1 and T2 are generic finite-active-domain:

q1 ≈µLp q2 implies q1 ≈p q2

q1 ≈µLa q2 implies q1 ≈a q2

q1 ≈µLp q2 implies q1 ≈µLa q2

where q1 ≈µLp q2 denotes that q1 and q2 satisfy the same
µLp formulas (and similarly for µLa).

6 Decidability
In this section, we study verification of µLa formulas over
bounded-state generic TSs and over bounded situation calcu-
lus action theories. In particular, as De Giacomo, Lesperance,
and Patrizi (2012; 2016), Bagheri Hariri et al. (2013a), Be-
lardinelli, Lomuscio, and Patrizi (2014), we aim at getting
decidability of verification by abstracting infinite TSs into
finite-state ones. The general idea is to take advantage of
what is shown in the previous section, namely that µLa is
invariant wrt p-bisimulation, i.e., if two generic TSs are p-
bisimilar (and hence also a-bisimilar by Theorem 9) they
satisfy the same µLa formulas. This appears to allow us
to focus on checking whether there exists a finite generic
TS that is p-bisimilar to the one generated by the bounded
action theory model of interest. However, the results in the
previous section assume infinite object domains, and this,
together with genericity, prevents one from building a finite
generic TS by the very definition of genericity (if there exists
a transition, then all, infinitely many, isomorphic transitions
must exist, each producing a different successor state). To
overcome this we need a stronger version of the invariance of
µLa wrt p-bisimulation, which also takes into account that
we cannot have a finite abstraction that preserves µLa and is
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independent from the formula to check, as discussed at the
end of Section 4. The next result establishes such a stronger
version of invariance.

In the statements below, we assume that T1 and T2 are over
the same set of fluents F and set of (explicitly mentioned)
constants C of a given theory D.

Theorem 13. Consider a finite set Vars of variables and
two generic TSs, T1 = 〈∆1, Q1, q10,→1, I1〉, bounded by b
and with infinite ∆1, and T2 = 〈∆2, Q2, q20,→2, I2〉, with
|∆2| ≥ 2b + |Vars|, such that T1 ≈p T2. Then, for every
closed µLa formula Φ with variables renamed apart and
belonging to Vars , we have T1 |= Φ if and only if T2 |= Φ.

To prove Theorem 13, we first establish the claim for the
simpler logic La, which is µLa without fixpoint constructs.
We then generalize it to the infinitary version of La, which
captures µLa, by using a well-known line of reasoning in
µ-calculus, see (van Benthem 1983; Bradfield and Stirling
2007) or Lemma 2 in (De Giacomo, Lesperance, and Pa-
trizi 2016). We omit the details of this latter part for brevity,
and focus instead on the first part by proving the follow-
ing stronger version of the theorem, though restricted to La
formulas only.

We call free(Φ) the set of free first-order variables of Φ.
Obviously, for closed formulas, free(Φ) is empty.

Lemma 14. Under the same hypothesis of Theorem 13,
let Φ be an open La formula with variables renamed
apart and belonging to Vars . Consider two states q1 ∈
Q1, q2 ∈ Q2 s.t., for some h, q1 ≈ph q2, and two
individual variable valuations v1, v2, mapping variables
in Vars to ∆1 and ∆2, respectively. If there exists
a bijection ĥ between adom(I1(q1)) ∪ IMG(v1|free(Φ))
and adom(I2(q2)) ∪ IMG(v2|free(Φ)), whose restriction
ĥ|adom(I1(q1)) coincides with h and s.t., for every indi-
vidual variable x ∈ free(Φ), ĥ(v1(x)) = v2(x), then
T1, q1, v1 |= Φ if and only if T2, q2, v2 |= Φ.

Proof (sketch). By induction on the structure of Φ.
For Φ = ϕ first-order, we use the following generaliza-

tion of Theorem 5.6.3 by Libkin (2007), whose proof is
immediately obtained by inspection of the original theorem’s
proof: for every first-order formula ϕ and interpretation
I = 〈∆, ·I〉 s.t. |∆| ≥ |adom(I)| + |vars(ϕ)|, ϕ can ef-
fectively be rewritten as a formula ϕ′, which we call the
domain-independent version of ϕ, with quantified variables
ranging only over the active domain, s.t. for every valuation v,
we have that I, v |= ϕ iff Ĩv, v |= ϕ′, for Ĩv the restriction
of I to its active domain union the images, through v, of the
variables free(ϕ). Considering the invariance of first-order
formulas wrt to isomorphic interpretations, that ∆1 is infinite,
and that |∆2| ≥ 2b+ |Vars|, it follows that, I1(q1), v1 |= ϕ

iff Ĩv11 (q1), v1 |= ϕ′ iff Ĩv22 (q2), v2 |= ϕ′ iff I2(q2), v2 |= ϕ,
for ϕ′ the domain-independent version of ϕ.

The case of boolean connectives is straightforward.
For Φ = ∃y.LIVE(y) ∧ Φ′, suppose first that T1, q1, v1 |=

Φ. Then there exists an object d1 ∈ adom(I1(q1))
s.t. T1, q1, v1[y/d1] |= Φ′. Notice that d1 is mapped, through
h and thus ĥ, to some d2 ∈ adom(I2(q2)). The claim fol-

lows by inductive hypothesis, using v1[y/d1], v2[y/d2], and
the bijection ĥ. The other direction is proven analogously.

For Φ = 〈−〉Φ′, suppose that T1, q1, v1 |= 〈−〉Φ′. Then,
there exists a transition q1 →1 q′1 such that T1, q

′
1, v1 |=

Φ′. Since q1 ≈ph q2, there exist a transition q2 →2 q′2,
and a bijection h′ : adom(I1(q1)) ∪ adom(I1(q′1)) 7→
adom(I2(q2)) ∪ adom(I2(q′2)) s.t. h′|adom(I1(q1)) coin-
cides with h|adom(I1(q1)), and q′1 ≈ph′|adom(I1(q′1))

q′2.

We would like apply the induction hypothesis using
Φ′, q′1, q

′
2, h
′|adom(I1(q′1)), v1, v2, and a suitable bijection ĥ′

that extends h′|adom(I1(q′1)). Unfortunately, for q′1 and q′2, an
ĥ′ satisfying the conditions of the lemma may not exist, in
general. However, we can show that there exist another state
q′′2 ∈ Q bisimilar to q′1 and s.t. q2 →2 q

′′
2 , and a bijection ĥ′

s.t. the inductive hypothesis applies to Φ′, q′1, q
′′
2 , ĥ
′, v1, v2.

This, by induction, implies that T2, q
′′
2 , v2 |= Φ′, thus that

T2, q2, v2 |= Φ. Actually, to show the existence of q′′2 and
ĥ′, we need to exploit the genericity of the two TSs and
the cardinality constraints on ∆2. In particular, the require-
ment that |∆2| ≥ 2b + |Vars| guarantees that, even in the
case where adom(I(q1)) and adom(I(q′1)) have no objects
in common and v1 maps all variables into objects that are
neither in adom(I(q1)) nor in adom(I(q′1)), ∆2 contains
enough objects for ĥ′ to establish a bijection. The other
direction is proven in a similar way.

We also show constructively that every bounded-state and
generic TS can be abstracted into a p-bisimilar finite-state
generic TS with a (finite) object domain of a suitable size.

Theorem 15. Consider a transition system T1 =
〈∆1, Q1, q10,→1, I1〉 that is generic, bounded by b, and with
infinite ∆1. Then, for every k ≥ 0, there exists a finite-state
generic TS T2 = 〈∆2, Q2, q20,→2, I2〉, with |∆2| = 2b+ k
such that T1 ≈p T2.

Proof (sketch). T2 is defined as follows. The object
domain ∆2 is a subset of ∆1 s.t. |∆2| = 2b + k and
adom(I1(q10)) ⊆ ∆2 (notice that |adom(I1(q10))| ≤ b).
The set of states is Q2 = IntF,C∆2

, which is the (finite) set of
interpretations of F and C over ∆2. The initial state q20 is
the interpretation s.t. q̃20 = Ĩ1(q10). The transition relation
→2 is s.t. q2 →2 q′2 iff there exist two states q1, q

′
1 ∈ Q1

s.t. q1 →1 q
′
1, Ĩ1(q1) ∼h q̃2, and Ĩ1(q′1) ∼h q̃′2, for some

isomorphism h (notice that here genericity comes into play).6
Finally, I2 is the identity function. Obviously, T2 is finite.
Moreover, it can be shown that T2 is generic and that for each
state q1 ∈ Q1 and every state q2 s.t. Ĩ1(q1) ∼ q̃2, including
the initial states q10 and q20, we have that q1 ≈p q2.

As a direct consequence of Theorems 13 and 15, we obtain:

Theorem 16. Given a finite set Vars of variables and
a generic TS T1 = 〈∆1, Q1, q10,→1, I1〉, bounded
by b and with infinite ∆1, there exists a TS T2 =
〈∆2, Q2, q20,→2, I2〉, with |∆2| ≥ 2b + |Vars|, such that
T1 ≈p T2 and hence such that, for every closed µLa formula

6Actually, Q2 can be restricted to the set of states in IntF,C
∆2

reachable through→2.
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Φ with variables renamed apart and belonging to Vars , we
have that T1 |= Φ if and only if T2 |= Φ.

We observe that the finite TS T2 in Theorem 16 is effec-
tively computable (as in the proof of Theorem 15) in the case
where the interpretation adom(I1(q01)) of the initial state of
T1 restricted to the active domain is known, and one can ef-
fectively check whether there exist two states q1 and q′1 such
that Ĩ1(q1) = q̃2, Ĩ1(q′1) = q̃′2, and q1 →2 q

′
1. When T2 can

be effectively computed, Theorem 16 shows decidability of
verification of µLa formulas. This is the case, e.g., for TSs
induced by models of bounded action theories.

However for such theories we can show a stronger result.
Theorem 17. Let D be a situation calculus action theory
bounded by b, Duno the part of D stating the existence, with
unique name assumption, of infinitely many constants, and n
the maximum among the number of variables occurring in
the precondition and successor state axioms of D. Let C ′ be
a finite set of constants such that C ⊆ C ′ and |C ′| ≥ b+ n.
Define the theory D′ = (D \ Duno) ∪ D′uno ∪ D′dc, where:

D′
uno = {

∧
c,c′∈C′,c,c′ distinct c 6= c′}, D′

dc = {∀x.
∨

c∈C′ x = c}.

Then, for every model M of D, there is a model M ′ of D′,
such that TM ≈p TM ′ . Similarly, for every model M ′ of D′
there is a model M of D, such that TM ≈p TM ′ .

Proof (sketch). Let M be a model of D with (infinite)
domain ∆. The model M ′ can be obtained by fixing a (fi-
nite) domain ∆′ ⊂ ∆, with cardinality |C ′|, that includes
the interpretation of the constants in C, and taking the inter-
pretation of the initial situation so that ĨM (S0) = ĨM ′(S0).
Observe that once the interpretation of the initial situation
is fixed, M ′ is fully determined by D′. Then, consider
TM = 〈∆, Q, q0, I,→〉 and TM ′ = 〈∆′, Q′, q′0, I ′,→′〉,
and build the relation R = {〈q, h, q′〉 | Ĩ(q) ∼h Ĩ ′(q′)}.
The proof consists in showing that R is a p-bisimulation
s.t. 〈q0, h0, q

′
0〉 ∈ R, for h0 the identity on adom(I(q0)).

This exploits the fact that TM and TM ′ are constructed by
successive action executions. The claim follows by observing
that under the same actions (up to object renaming), succes-
sors of states with isomorphic labelings have isomorphic la-
belings. The other direction can be proved analogously.

As natural, TSs induced by models of finite-state action
theories can be made finite.
Theorem 18. LetD′ be a (bounded) situation calculus action
theory defined as in Theorem 17, for some finite C ′. Then,
for every model M ′ of D′ with (finite) object domain ∆′, the
corresponding induced TS TM ′ is p-bisimilar to a TS TF that
is generic, finite-state, and effectively computable from D′,
ĨM ′(S0), and ∆′.

Proof (sketch). We prove the result by providing an al-
gorithm to compute TF = 〈∆F , QF , qF0,→F , IF 〉. We set
∆F = ∆′, and IF as the identity function, and we initialize
qF0

= IM ′(S0), QF = {qF0}, and→F= ∅. Then, starting
with q = qF0, we consider all actions a that, in M ′, are exe-
cutable in those situations s s.t. IM ′(s) = q. This requires
evaluating only the (situation-suppressed) precondition ax-
iom of a against I(q). Notice that since ∆F is finite, there
are only finitely many actions. For every a, we then compute

the interpretation of situation s′ = doM
′
(a, s), for s as above.

To this end, it is enough to evaluate the (situation-suppressed)
right-hand side of each successor-state axiom against q (i.e.,
IM ′(s), for s as above), with the action assigned to a, thus
producing a new interpretation q′ = IM ′(s′). Observe that
the finiteness of ∆F guarantees that both precondition and
successor-state axioms can be effectively evaluated. Then,
if not already present, we add the obtained q′ to QF , and
let q →F q′. Finally, we iterate these steps on the newly
added states, until no new states are added. Termination is an
obvious consequence of ∆F ’s finiteness, which implies that
only finitely many states can be a added to QF . Genericity is
a consequence of the fact that the interpretation of states is
obtained by answering first-order queries, which are unable
to distinguish objects outside the active domain.

With these results in place we can immediately prove that
if we are given a model M of D, then it is decidable to check
TM |= Φ. That is we have decidability in case of complete
information. Furthermore we can extend such a result to deal
with verification in presence of incomplete information. We
write D |= Φ if TM |= Φ, for every model M of D.
Theorem 19. Let D be a situation calculus bounded action
theory (with infinite object domain) and Φ a closed µLa
formula with all variables renamed apart and belonging to a
finite set Vars . Then, it is decidable to check wether D |= Φ.

Proof (sketch). Given D, let D′ be an action theory as
in Theorem 17, with |C ′| = 2b + m, for m the maximum
between |Vars| and the maximum number of variables oc-
curring in the action precondition and successor-state axioms
of D (n of Theorem 17). By Theorem 17, every model M
of D with infinite object domain ∆, has a corresponding p-
bisimilar modelM ′ ofD′ with finite object domain ∆′ of size
|C ′|, and viceversa. Thus, by Theorem 13, for corresponding
M and M ′, we have that TM |= Φ iff TM ′ |= Φ. Hence,
since by Theorem 17, the models of D′ “cover” those of D
and viceversa, it follows that D |= Φ iff D′ |= Φ. Finally, de-
cidability is easily obtained by observing that the models M ′
of D′ are finitely many, up to object renaming, and that by
Theorem 18, checking whether TM ′ |= Φ is decidable.

7 Conclusions
In this paper we have studied first-order µ-calculus with
quantification across, in the two main variants proposed in
literature. We have seen that the two corresponding notions
of bisimulation collapse for the class of generic transition
systems, which includes all transition systems generated by
reasoning about actions formalisms based on first-order repre-
sentation of states, and logical mechanisms to generate from
the current state the next one, in particular situation calculus.
From this we could derive decidability of verification for
µLa over bounded action theories. This result contrasts with
verification for the first-order LTL variant corresponding to
µLa, which has been shown to be undecidable.
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